Description: Lemma for 2reu4 . (Contributed by Alexander van der Vekens, 1-Jul-2017)
Ref | Expression | ||
---|---|---|---|
Assertion | 2reu4lem | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reu3 | |
|
2 | reu3 | |
|
3 | 1 2 | anbi12i | |
4 | 3 | a1i | |
5 | an4 | |
|
6 | 5 | a1i | |
7 | rexcom | |
|
8 | 7 | anbi2i | |
9 | anidm | |
|
10 | 8 9 | bitri | |
11 | 10 | a1i | |
12 | r19.26 | |
|
13 | nfra1 | |
|
14 | 13 | r19.3rz | |
15 | 14 | bicomd | |
16 | 15 | adantr | |
17 | 16 | adantr | |
18 | 17 | anbi2d | |
19 | jcab | |
|
20 | 19 | ralbii | |
21 | r19.26 | |
|
22 | 20 21 | bitri | |
23 | 22 | ralbii | |
24 | r19.26 | |
|
25 | 23 24 | bitri | |
26 | 25 | a1i | |
27 | 18 26 | bitr4d | |
28 | 12 27 | bitr2id | |
29 | r19.26 | |
|
30 | nfra1 | |
|
31 | 30 | r19.3rz | |
32 | 31 | ad2antlr | |
33 | 32 | bicomd | |
34 | ralcom | |
|
35 | 34 | a1i | |
36 | 33 35 | anbi12d | |
37 | 29 36 | bitrid | |
38 | 37 | ralbidv | |
39 | 28 38 | bitr4d | |
40 | r19.23v | |
|
41 | r19.23v | |
|
42 | 40 41 | anbi12i | |
43 | 42 | 2ralbii | |
44 | 43 | a1i | |
45 | neneq | |
|
46 | neneq | |
|
47 | 45 46 | anim12i | |
48 | 47 | olcd | |
49 | dfbi3 | |
|
50 | 48 49 | sylibr | |
51 | nfre1 | |
|
52 | nfv | |
|
53 | 51 52 | nfim | |
54 | nfre1 | |
|
55 | nfv | |
|
56 | 54 55 | nfim | |
57 | 53 56 | raaan2 | |
58 | 50 57 | syl | |
59 | 58 | adantr | |
60 | 39 44 59 | 3bitrd | |
61 | 60 | 2rexbidva | |
62 | reeanv | |
|
63 | 61 62 | bitr2di | |
64 | 11 63 | anbi12d | |
65 | 4 6 64 | 3bitrd | |