| Step |
Hyp |
Ref |
Expression |
| 1 |
|
2sq.1 |
|
| 2 |
1
|
2sqlem1 |
|
| 3 |
|
elgz |
|
| 4 |
3
|
simp2bi |
|
| 5 |
3
|
simp3bi |
|
| 6 |
|
gzcn |
|
| 7 |
6
|
absvalsq2d |
|
| 8 |
|
oveq1 |
|
| 9 |
8
|
oveq1d |
|
| 10 |
9
|
eqeq2d |
|
| 11 |
|
oveq1 |
|
| 12 |
11
|
oveq2d |
|
| 13 |
12
|
eqeq2d |
|
| 14 |
10 13
|
rspc2ev |
|
| 15 |
4 5 7 14
|
syl3anc |
|
| 16 |
|
eqeq1 |
|
| 17 |
16
|
2rexbidv |
|
| 18 |
15 17
|
syl5ibrcom |
|
| 19 |
18
|
rexlimiv |
|
| 20 |
2 19
|
sylbi |
|
| 21 |
|
gzreim |
|
| 22 |
|
zcn |
|
| 23 |
|
ax-icn |
|
| 24 |
|
zcn |
|
| 25 |
|
mulcl |
|
| 26 |
23 24 25
|
sylancr |
|
| 27 |
|
addcl |
|
| 28 |
22 26 27
|
syl2an |
|
| 29 |
28
|
absvalsq2d |
|
| 30 |
|
zre |
|
| 31 |
|
zre |
|
| 32 |
|
crre |
|
| 33 |
30 31 32
|
syl2an |
|
| 34 |
33
|
oveq1d |
|
| 35 |
|
crim |
|
| 36 |
30 31 35
|
syl2an |
|
| 37 |
36
|
oveq1d |
|
| 38 |
34 37
|
oveq12d |
|
| 39 |
29 38
|
eqtr2d |
|
| 40 |
|
fveq2 |
|
| 41 |
40
|
oveq1d |
|
| 42 |
41
|
rspceeqv |
|
| 43 |
21 39 42
|
syl2anc |
|
| 44 |
1
|
2sqlem1 |
|
| 45 |
43 44
|
sylibr |
|
| 46 |
|
eleq1 |
|
| 47 |
45 46
|
syl5ibrcom |
|
| 48 |
47
|
rexlimivv |
|
| 49 |
20 48
|
impbii |
|