Description: Lemma for 2sq . (Contributed by Mario Carneiro, 19-Jun-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | 2sq.1 | |
|
Assertion | 2sqlem2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2sq.1 | |
|
2 | 1 | 2sqlem1 | |
3 | elgz | |
|
4 | 3 | simp2bi | |
5 | 3 | simp3bi | |
6 | gzcn | |
|
7 | 6 | absvalsq2d | |
8 | oveq1 | |
|
9 | 8 | oveq1d | |
10 | 9 | eqeq2d | |
11 | oveq1 | |
|
12 | 11 | oveq2d | |
13 | 12 | eqeq2d | |
14 | 10 13 | rspc2ev | |
15 | 4 5 7 14 | syl3anc | |
16 | eqeq1 | |
|
17 | 16 | 2rexbidv | |
18 | 15 17 | syl5ibrcom | |
19 | 18 | rexlimiv | |
20 | 2 19 | sylbi | |
21 | gzreim | |
|
22 | zcn | |
|
23 | ax-icn | |
|
24 | zcn | |
|
25 | mulcl | |
|
26 | 23 24 25 | sylancr | |
27 | addcl | |
|
28 | 22 26 27 | syl2an | |
29 | 28 | absvalsq2d | |
30 | zre | |
|
31 | zre | |
|
32 | crre | |
|
33 | 30 31 32 | syl2an | |
34 | 33 | oveq1d | |
35 | crim | |
|
36 | 30 31 35 | syl2an | |
37 | 36 | oveq1d | |
38 | 34 37 | oveq12d | |
39 | 29 38 | eqtr2d | |
40 | fveq2 | |
|
41 | 40 | oveq1d | |
42 | 41 | rspceeqv | |
43 | 21 39 42 | syl2anc | |
44 | 1 | 2sqlem1 | |
45 | 43 44 | sylibr | |
46 | eleq1 | |
|
47 | 45 46 | syl5ibrcom | |
48 | 47 | rexlimivv | |
49 | 20 48 | impbii | |