Description: R has no multiplicative (left) identity. (Contributed by AV, 12-Feb-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | 2zrng.e | |
|
2zrngbas.r | |
||
2zrngmmgm.1 | |
||
Assertion | 2zrngnmlid | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2zrng.e | |
|
2 | 2zrngbas.r | |
|
3 | 2zrngmmgm.1 | |
|
4 | 1 | 2even | |
5 | 4 | a1i | |
6 | oveq2 | |
|
7 | id | |
|
8 | 6 7 | neeq12d | |
9 | 8 | adantl | |
10 | elrabi | |
|
11 | 10 | zcnd | |
12 | 11 1 | eleq2s | |
13 | 1 | 1neven | |
14 | elnelne2 | |
|
15 | 13 14 | mpan2 | |
16 | 15 | adantr | |
17 | simpr | |
|
18 | 2cnd | |
|
19 | 2ne0 | |
|
20 | 19 | a1i | |
21 | 17 18 20 | divcan4d | |
22 | 2cnne0 | |
|
23 | divid | |
|
24 | 22 23 | mp1i | |
25 | 16 21 24 | 3netr4d | |
26 | 17 18 | mulcld | |
27 | 22 | a1i | |
28 | div11 | |
|
29 | 26 18 27 28 | syl3anc | |
30 | 29 | biimprd | |
31 | 30 | necon3d | |
32 | 25 31 | mpd | |
33 | 12 32 | mpdan | |
34 | 5 9 33 | rspcedvd | |
35 | 34 | rgen | |