Metamath Proof Explorer


Theorem 2zrngnmlid

Description: R has no multiplicative (left) identity. (Contributed by AV, 12-Feb-2020)

Ref Expression
Hypotheses 2zrng.e E=z|xz=2x
2zrngbas.r R=fld𝑠E
2zrngmmgm.1 M=mulGrpR
Assertion 2zrngnmlid bEaEbaa

Proof

Step Hyp Ref Expression
1 2zrng.e E=z|xz=2x
2 2zrngbas.r R=fld𝑠E
3 2zrngmmgm.1 M=mulGrpR
4 1 2even 2E
5 4 a1i bE2E
6 oveq2 a=2ba=b2
7 id a=2a=2
8 6 7 neeq12d a=2baab22
9 8 adantl bEa=2baab22
10 elrabi bz|xz=2xb
11 10 zcnd bz|xz=2xb
12 11 1 eleq2s bEb
13 1 1neven 1E
14 elnelne2 bE1Eb1
15 13 14 mpan2 bEb1
16 15 adantr bEbb1
17 simpr bEbb
18 2cnd bEb2
19 2ne0 20
20 19 a1i bEb20
21 17 18 20 divcan4d bEbb22=b
22 2cnne0 220
23 divid 22022=1
24 22 23 mp1i bEb22=1
25 16 21 24 3netr4d bEbb2222
26 17 18 mulcld bEbb2
27 22 a1i bEb220
28 div11 b22220b22=22b2=2
29 26 18 27 28 syl3anc bEbb22=22b2=2
30 29 biimprd bEbb2=2b22=22
31 30 necon3d bEbb2222b22
32 25 31 mpd bEbb22
33 12 32 mpdan bEb22
34 5 9 33 rspcedvd bEaEbaa
35 34 rgen bEaEbaa