Metamath Proof Explorer


Theorem 2zrngnmlid

Description: R has no multiplicative (left) identity. (Contributed by AV, 12-Feb-2020)

Ref Expression
Hypotheses 2zrng.e E = z | x z = 2 x
2zrngbas.r R = fld 𝑠 E
2zrngmmgm.1 M = mulGrp R
Assertion 2zrngnmlid b E a E b a a

Proof

Step Hyp Ref Expression
1 2zrng.e E = z | x z = 2 x
2 2zrngbas.r R = fld 𝑠 E
3 2zrngmmgm.1 M = mulGrp R
4 1 2even 2 E
5 4 a1i b E 2 E
6 oveq2 a = 2 b a = b 2
7 id a = 2 a = 2
8 6 7 neeq12d a = 2 b a a b 2 2
9 8 adantl b E a = 2 b a a b 2 2
10 elrabi b z | x z = 2 x b
11 10 zcnd b z | x z = 2 x b
12 11 1 eleq2s b E b
13 1 1neven 1 E
14 elnelne2 b E 1 E b 1
15 13 14 mpan2 b E b 1
16 15 adantr b E b b 1
17 simpr b E b b
18 2cnd b E b 2
19 2ne0 2 0
20 19 a1i b E b 2 0
21 17 18 20 divcan4d b E b b 2 2 = b
22 2cnne0 2 2 0
23 divid 2 2 0 2 2 = 1
24 22 23 mp1i b E b 2 2 = 1
25 16 21 24 3netr4d b E b b 2 2 2 2
26 17 18 mulcld b E b b 2
27 22 a1i b E b 2 2 0
28 div11 b 2 2 2 2 0 b 2 2 = 2 2 b 2 = 2
29 26 18 27 28 syl3anc b E b b 2 2 = 2 2 b 2 = 2
30 29 biimprd b E b b 2 = 2 b 2 2 = 2 2
31 30 necon3d b E b b 2 2 2 2 b 2 2
32 25 31 mpd b E b b 2 2
33 12 32 mpdan b E b 2 2
34 5 9 33 rspcedvd b E a E b a a
35 34 rgen b E a E b a a