Metamath Proof Explorer


Theorem 3lexlogpow5ineq1

Description: First inequality in inequality chain, proposed by Mario Carneiro (Contributed by metakunt, 22-May-2024)

Ref Expression
Assertion 3lexlogpow5ineq1 9 < 11 7 5

Proof

Step Hyp Ref Expression
1 eqid 5 = 5
2 2p2e4 2 + 2 = 4
3 2 oveq1i 2 + 2 + 1 = 4 + 1
4 4p1e5 4 + 1 = 5
5 3 4 eqtri 2 + 2 + 1 = 5
6 1 5 eqtr4i 5 = 2 + 2 + 1
7 6 oveq2i 7 5 = 7 2 + 2 + 1
8 7cn 7
9 2nn0 2 0
10 9 9 nn0addcli 2 + 2 0
11 8 10 pm3.2i 7 2 + 2 0
12 expp1 7 2 + 2 0 7 2 + 2 + 1 = 7 2 + 2 7
13 11 12 ax-mp 7 2 + 2 + 1 = 7 2 + 2 7
14 8 9 9 3pm3.2i 7 2 0 2 0
15 expadd 7 2 0 2 0 7 2 + 2 = 7 2 7 2
16 14 15 ax-mp 7 2 + 2 = 7 2 7 2
17 8 sqvali 7 2 = 7 7
18 7t7e49 7 7 = 49
19 17 18 eqtri 7 2 = 49
20 19 19 oveq12i 7 2 7 2 = 49 49
21 4nn0 4 0
22 9nn0 9 0
23 21 22 deccl 49 0
24 eqid 49 = 49
25 1nn0 1 0
26 21 21 deccl 44 0
27 eqid 44 = 44
28 0nn0 0 0
29 6nn0 6 0
30 21 21 nn0addcli 4 + 4 0
31 4t4e16 4 4 = 16
32 1p1e2 1 + 1 = 2
33 4p4e8 4 + 4 = 8
34 33 oveq2i 6 + 4 + 4 = 6 + 8
35 8cn 8
36 6cn 6
37 8p6e14 8 + 6 = 14
38 35 36 37 addcomli 6 + 8 = 14
39 34 38 eqtri 6 + 4 + 4 = 14
40 25 29 30 31 32 21 39 decaddci 4 4 + 4 + 4 = 24
41 3nn0 3 0
42 9t4e36 9 4 = 36
43 3p1e4 3 + 1 = 4
44 6p4e10 6 + 4 = 10
45 41 29 21 42 43 44 decaddci2 9 4 + 4 = 40
46 21 22 21 21 24 27 21 28 21 40 45 decmac 49 4 + 44 = 240
47 8nn0 8 0
48 9cn 9
49 4cn 4
50 48 49 42 mulcomli 4 9 = 36
51 41 29 47 50 43 21 38 decaddci 4 9 + 8 = 44
52 9t9e81 9 9 = 81
53 22 21 22 24 25 47 51 52 decmul1c 49 9 = 441
54 23 21 22 24 25 26 46 53 decmul2c 49 49 = 2401
55 20 54 eqtri 7 2 7 2 = 2401
56 16 55 eqtri 7 2 + 2 = 2401
57 56 oveq1i 7 2 + 2 7 = 2401 7
58 7 13 57 3eqtri 7 5 = 2401 7
59 7nn0 7 0
60 9 21 deccl 24 0
61 60 28 deccl 240 0
62 eqid 2401 = 2401
63 25 29 deccl 16 0
64 63 47 deccl 168 0
65 eqid 240 = 240
66 eqid 24 = 24
67 2cn 2
68 7t2e14 7 2 = 14
69 8 67 68 mulcomli 2 7 = 14
70 4p2e6 4 + 2 = 6
71 25 21 9 69 70 decaddi 2 7 + 2 = 16
72 7t4e28 7 4 = 28
73 8 49 72 mulcomli 4 7 = 28
74 59 9 21 66 47 9 71 73 decmul1c 24 7 = 168
75 35 addid1i 8 + 0 = 8
76 63 47 28 74 75 decaddi 24 7 + 0 = 168
77 0cn 0
78 8 mul01i 7 0 = 0
79 28 dec0h 0 = 00
80 79 eqcomi 00 = 0
81 78 80 eqtr4i 7 0 = 00
82 8 77 81 mulcomli 0 7 = 00
83 59 60 28 65 28 28 76 82 decmul1c 240 7 = 1680
84 00id 0 + 0 = 0
85 64 28 28 83 84 decaddi 240 7 + 0 = 1680
86 ax-1cn 1
87 8 mulid1i 7 1 = 7
88 59 dec0h 7 = 07
89 88 eqcomi 07 = 7
90 87 89 eqtr4i 7 1 = 07
91 8 86 90 mulcomli 1 7 = 07
92 59 61 25 62 59 28 85 91 decmul1c 2401 7 = 16807
93 58 92 eqtri 7 5 = 16807
94 93 oveq2i 9 7 5 = 9 16807
95 64 28 deccl 1680 0
96 95 59 deccl 16807 0
97 96 nn0cni 16807
98 48 97 mulcomi 9 16807 = 16807 9
99 eqid 16807 = 16807
100 eqid 1680 = 1680
101 29 dec0h 6 = 06
102 5nn0 5 0
103 25 102 deccl 15 0
104 103 25 deccl 151 0
105 eqid 168 = 168
106 eqid 16 = 16
107 48 mulid2i 1 9 = 9
108 36 addid2i 0 + 6 = 6
109 107 108 oveq12i 1 9 + 0 + 6 = 9 + 6
110 9p6e15 9 + 6 = 15
111 109 110 eqtri 1 9 + 0 + 6 = 15
112 9t6e54 9 6 = 54
113 48 36 112 mulcomli 6 9 = 54
114 5p1e6 5 + 1 = 6
115 7p4e11 7 + 4 = 11
116 8 49 115 addcomli 4 + 7 = 11
117 102 21 59 113 114 25 116 decaddci 6 9 + 7 = 61
118 25 29 28 59 106 88 22 25 29 111 117 decmac 16 9 + 7 = 151
119 9t8e72 9 8 = 72
120 48 35 119 mulcomli 8 9 = 72
121 22 63 47 105 9 59 118 120 decmul1c 168 9 = 1512
122 67 addid1i 2 + 0 = 2
123 104 9 28 121 122 decaddi 168 9 + 0 = 1512
124 48 mul02i 0 9 = 0
125 124 oveq1i 0 9 + 6 = 0 + 6
126 125 108 eqtri 0 9 + 6 = 6
127 64 28 28 29 100 101 22 123 126 decma 1680 9 + 6 = 15126
128 9t7e63 9 7 = 63
129 48 8 128 mulcomli 7 9 = 63
130 22 95 59 99 41 29 127 129 decmul1c 16807 9 = 151263
131 104 9 deccl 1512 0
132 131 29 deccl 15126 0
133 63 25 deccl 161 0
134 133 28 deccl 1610 0
135 134 102 deccl 16105 0
136 3lt10 3 < 10
137 6lt10 6 < 10
138 2lt10 2 < 10
139 1lt10 1 < 10
140 6nn 6
141 5lt6 5 < 6
142 25 102 140 141 declt 15 < 16
143 103 63 25 25 139 142 decltc 151 < 161
144 104 133 9 28 138 143 decltc 1512 < 1610
145 131 134 29 102 137 144 decltc 15126 < 16105
146 132 135 41 25 136 145 decltc 151263 < 161051
147 130 146 eqbrtri 16807 9 < 161051
148 98 147 eqbrtri 9 16807 < 161051
149 94 148 eqbrtri 9 7 5 < 161051
150 4 eqcomi 5 = 4 + 1
151 150 oveq2i 11 5 = 11 4 + 1
152 25 25 deccl 11 0
153 152 nn0cni 11
154 153 21 pm3.2i 11 4 0
155 expp1 11 4 0 11 4 + 1 = 11 4 11
156 154 155 ax-mp 11 4 + 1 = 11 4 11
157 2 eqcomi 4 = 2 + 2
158 157 oveq2i 11 4 = 11 2 + 2
159 153 9 9 3pm3.2i 11 2 0 2 0
160 expadd 11 2 0 2 0 11 2 + 2 = 11 2 11 2
161 159 160 ax-mp 11 2 + 2 = 11 2 11 2
162 153 sqvali 11 2 = 11 11
163 eqid 11 = 11
164 153 mulid2i 1 11 = 11
165 25 25 32 164 decsuc 1 11 + 1 = 12
166 152 25 25 163 25 25 165 164 decmul1c 11 11 = 121
167 162 166 eqtri 11 2 = 121
168 167 167 oveq12i 11 2 11 2 = 121 121
169 25 9 deccl 12 0
170 169 25 deccl 121 0
171 eqid 121 = 121
172 eqid 12 = 12
173 170 nn0cni 121
174 173 mulid2i 1 121 = 121
175 25 dec0h 1 = 01
176 67 addid2i 0 + 2 = 2
177 49 86 4 addcomli 1 + 4 = 5
178 28 25 9 21 175 66 176 177 decadd 1 + 24 = 25
179 25 9 9 172 2 decaddi 12 + 2 = 14
180 5cn 5
181 180 86 114 addcomli 1 + 5 = 6
182 169 25 9 102 174 178 179 181 decadd 1 121 + 1 + 24 = 146
183 9 dec0h 2 = 02
184 28 28 nn0addcli 0 + 0 0
185 2t1e2 2 1 = 2
186 185 oveq1i 2 1 + 0 = 2 + 0
187 186 122 eqtri 2 1 + 0 = 2
188 2t2e4 2 2 = 4
189 21 dec0h 4 = 04
190 189 eqcomi 04 = 4
191 188 190 eqtr4i 2 2 = 04
192 9 25 9 172 21 28 187 191 decmul2c 2 12 = 24
193 84 oveq2i 4 + 0 + 0 = 4 + 0
194 49 addid1i 4 + 0 = 4
195 193 194 eqtri 4 + 0 + 0 = 4
196 9 21 184 192 195 decaddi 2 12 + 0 + 0 = 24
197 185 oveq1i 2 1 + 2 = 2 + 2
198 197 2 eqtri 2 1 + 2 = 4
199 198 190 eqtr4i 2 1 + 2 = 04
200 169 25 28 9 171 183 9 21 28 196 199 decma2c 2 121 + 2 = 244
201 25 9 25 9 172 172 170 21 60 182 200 decmac 12 121 + 12 = 1464
202 170 169 25 171 25 169 201 174 decmul1c 121 121 = 14641
203 168 202 eqtri 11 2 11 2 = 14641
204 161 203 eqtri 11 2 + 2 = 14641
205 158 204 eqtri 11 4 = 14641
206 205 oveq1i 11 4 11 = 14641 11
207 156 206 eqtri 11 4 + 1 = 14641 11
208 151 207 eqtri 11 5 = 14641 11
209 25 21 deccl 14 0
210 209 29 deccl 146 0
211 210 21 deccl 1464 0
212 eqid 14641 = 14641
213 eqid 1464 = 1464
214 eqid 146 = 146
215 194 190 eqtr4i 4 + 0 = 04
216 49 77 215 addcomli 0 + 4 = 04
217 eqid 14 = 14
218 8 addid1i 7 + 0 = 7
219 218 89 eqtr4i 7 + 0 = 07
220 8 77 219 addcomli 0 + 7 = 07
221 28 102 nn0addcli 0 + 5 0
222 180 addid2i 0 + 5 = 5
223 222 oveq2i 1 + 0 + 5 = 1 + 5
224 223 181 eqtri 1 + 0 + 5 = 6
225 25 25 221 164 224 decaddi 1 11 + 0 + 5 = 16
226 49 mulid1i 4 1 = 4
227 0p1e1 0 + 1 = 1
228 226 227 oveq12i 4 1 + 0 + 1 = 4 + 1
229 228 4 eqtri 4 1 + 0 + 1 = 5
230 226 oveq1i 4 1 + 7 = 4 + 7
231 230 116 eqtri 4 1 + 7 = 11
232 25 25 28 59 163 88 21 25 25 229 231 decma2c 4 11 + 7 = 51
233 25 21 28 59 217 220 152 25 102 225 232 decmac 14 11 + 0 + 7 = 161
234 36 mulid1i 6 1 = 6
235 86 addid2i 0 + 1 = 1
236 234 235 oveq12i 6 1 + 0 + 1 = 6 + 1
237 6p1e7 6 + 1 = 7
238 236 237 eqtri 6 1 + 0 + 1 = 7
239 eqid 4 = 4
240 234 239 oveq12i 6 1 + 4 = 6 + 4
241 240 44 eqtri 6 1 + 4 = 10
242 25 25 28 21 163 189 29 28 25 238 241 decma2c 6 11 + 4 = 70
243 209 29 28 21 214 216 152 28 59 233 242 decmac 146 11 + 0 + 4 = 1610
244 226 84 oveq12i 4 1 + 0 + 0 = 4 + 0
245 244 194 eqtri 4 1 + 0 + 0 = 4
246 226 oveq1i 4 1 + 1 = 4 + 1
247 246 4 eqtri 4 1 + 1 = 5
248 102 dec0h 5 = 05
249 248 eqcomi 05 = 5
250 247 249 eqtr4i 4 1 + 1 = 05
251 25 25 28 25 163 175 21 102 28 245 250 decma2c 4 11 + 1 = 45
252 210 21 28 25 213 175 152 102 21 243 251 decmac 1464 11 + 1 = 16105
253 152 211 25 212 25 25 252 164 decmul1c 14641 11 = 161051
254 208 253 eqtri 11 5 = 161051
255 254 eqcomi 161051 = 11 5
256 149 255 breqtri 9 7 5 < 11 5
257 7re 7
258 5nn 5
259 258 nnzi 5
260 7pos 0 < 7
261 257 259 260 3pm3.2i 7 5 0 < 7
262 expgt0 7 5 0 < 7 0 < 7 5
263 261 262 ax-mp 0 < 7 5
264 9re 9
265 1nn 1
266 25 265 decnncl 11
267 266 nnrei 11
268 267 102 pm3.2i 11 5 0
269 reexpcl 11 5 0 11 5
270 268 269 ax-mp 11 5
271 257 102 pm3.2i 7 5 0
272 reexpcl 7 5 0 7 5
273 271 272 ax-mp 7 5
274 264 270 273 ltmuldivi 0 < 7 5 9 7 5 < 11 5 9 < 11 5 7 5
275 263 274 ax-mp 9 7 5 < 11 5 9 < 11 5 7 5
276 256 275 mpbi 9 < 11 5 7 5
277 153 a1i 11
278 8 a1i 7
279 0red 0
280 260 a1i 0 < 7
281 279 280 ltned 0 7
282 281 necomd 7 0
283 102 a1i 5 0
284 277 278 282 283 expdivd 11 7 5 = 11 5 7 5
285 284 eqcomd 11 5 7 5 = 11 7 5
286 285 mptru 11 5 7 5 = 11 7 5
287 276 286 breqtri 9 < 11 7 5