Metamath Proof Explorer


Theorem abs1m

Description: For any complex number, there exists a unit-magnitude multiplier that produces its absolute value. Part of proof of Theorem 13-2.12 of Gleason p. 195. (Contributed by NM, 26-Mar-2005)

Ref Expression
Assertion abs1m Axx=1A=xA

Proof

Step Hyp Ref Expression
1 fveq2 A=0A=0
2 abs0 0=0
3 1 2 eqtrdi A=0A=0
4 oveq2 A=0xA=x0
5 3 4 eqeq12d A=0A=xA0=x0
6 5 anbi2d A=0x=1A=xAx=10=x0
7 6 rexbidv A=0xx=1A=xAxx=10=x0
8 simpl AA0A
9 8 cjcld AA0A
10 abscl AA
11 10 adantr AA0A
12 11 recnd AA0A
13 abs00 AA=0A=0
14 13 necon3bid AA0A0
15 14 biimpar AA0A0
16 9 12 15 divcld AA0AA
17 absdiv AAA0AA=AA
18 9 12 15 17 syl3anc AA0AA=AA
19 abscj AA=A
20 19 adantr AA0A=A
21 absidm AA=A
22 21 adantr AA0A=A
23 20 22 oveq12d AA0AA=AA
24 12 15 dividd AA0AA=1
25 18 23 24 3eqtrd AA0AA=1
26 8 9 12 15 divassd AA0AAA=AAA
27 12 sqvald AA0A2=AA
28 absvalsq AA2=AA
29 28 adantr AA0A2=AA
30 27 29 eqtr3d AA0AA=AA
31 12 12 15 30 mvllmuld AA0A=AAA
32 16 8 mulcomd AA0AAA=AAA
33 26 31 32 3eqtr4d AA0A=AAA
34 fveqeq2 x=AAx=1AA=1
35 oveq1 x=AAxA=AAA
36 35 eqeq2d x=AAA=xAA=AAA
37 34 36 anbi12d x=AAx=1A=xAAA=1A=AAA
38 37 rspcev AAAA=1A=AAAxx=1A=xA
39 16 25 33 38 syl12anc AA0xx=1A=xA
40 ax-icn i
41 absi i=1
42 it0e0 i0=0
43 42 eqcomi 0=i0
44 41 43 pm3.2i i=10=i0
45 fveqeq2 x=ix=1i=1
46 oveq1 x=ix0=i0
47 46 eqeq2d x=i0=x00=i0
48 45 47 anbi12d x=ix=10=x0i=10=i0
49 48 rspcev ii=10=i0xx=10=x0
50 40 44 49 mp2an xx=10=x0
51 50 a1i Axx=10=x0
52 7 39 51 pm2.61ne Axx=1A=xA