| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fveq2 |
|
| 2 |
|
abs0 |
|
| 3 |
1 2
|
eqtrdi |
|
| 4 |
|
oveq2 |
|
| 5 |
3 4
|
eqeq12d |
|
| 6 |
5
|
anbi2d |
|
| 7 |
6
|
rexbidv |
|
| 8 |
|
simpl |
|
| 9 |
8
|
cjcld |
|
| 10 |
|
abscl |
|
| 11 |
10
|
adantr |
|
| 12 |
11
|
recnd |
|
| 13 |
|
abs00 |
|
| 14 |
13
|
necon3bid |
|
| 15 |
14
|
biimpar |
|
| 16 |
9 12 15
|
divcld |
|
| 17 |
|
absdiv |
|
| 18 |
9 12 15 17
|
syl3anc |
|
| 19 |
|
abscj |
|
| 20 |
19
|
adantr |
|
| 21 |
|
absidm |
|
| 22 |
21
|
adantr |
|
| 23 |
20 22
|
oveq12d |
|
| 24 |
12 15
|
dividd |
|
| 25 |
18 23 24
|
3eqtrd |
|
| 26 |
8 9 12 15
|
divassd |
|
| 27 |
12
|
sqvald |
|
| 28 |
|
absvalsq |
|
| 29 |
28
|
adantr |
|
| 30 |
27 29
|
eqtr3d |
|
| 31 |
12 12 15 30
|
mvllmuld |
|
| 32 |
16 8
|
mulcomd |
|
| 33 |
26 31 32
|
3eqtr4d |
|
| 34 |
|
fveqeq2 |
|
| 35 |
|
oveq1 |
|
| 36 |
35
|
eqeq2d |
|
| 37 |
34 36
|
anbi12d |
|
| 38 |
37
|
rspcev |
|
| 39 |
16 25 33 38
|
syl12anc |
|
| 40 |
|
ax-icn |
|
| 41 |
|
absi |
|
| 42 |
|
it0e0 |
|
| 43 |
42
|
eqcomi |
|
| 44 |
41 43
|
pm3.2i |
|
| 45 |
|
fveqeq2 |
|
| 46 |
|
oveq1 |
|
| 47 |
46
|
eqeq2d |
|
| 48 |
45 47
|
anbi12d |
|
| 49 |
48
|
rspcev |
|
| 50 |
40 44 49
|
mp2an |
|
| 51 |
50
|
a1i |
|
| 52 |
7 39 51
|
pm2.61ne |
|