Description: For any complex number, there exists a unit-magnitude multiplier that produces its absolute value. Part of proof of Theorem 13-2.12 of Gleason p. 195. (Contributed by NM, 26-Mar-2005)
Ref | Expression | ||
---|---|---|---|
Assertion | abs1m | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 | |
|
2 | abs0 | |
|
3 | 1 2 | eqtrdi | |
4 | oveq2 | |
|
5 | 3 4 | eqeq12d | |
6 | 5 | anbi2d | |
7 | 6 | rexbidv | |
8 | simpl | |
|
9 | 8 | cjcld | |
10 | abscl | |
|
11 | 10 | adantr | |
12 | 11 | recnd | |
13 | abs00 | |
|
14 | 13 | necon3bid | |
15 | 14 | biimpar | |
16 | 9 12 15 | divcld | |
17 | absdiv | |
|
18 | 9 12 15 17 | syl3anc | |
19 | abscj | |
|
20 | 19 | adantr | |
21 | absidm | |
|
22 | 21 | adantr | |
23 | 20 22 | oveq12d | |
24 | 12 15 | dividd | |
25 | 18 23 24 | 3eqtrd | |
26 | 8 9 12 15 | divassd | |
27 | 12 | sqvald | |
28 | absvalsq | |
|
29 | 28 | adantr | |
30 | 27 29 | eqtr3d | |
31 | 12 12 15 30 | mvllmuld | |
32 | 16 8 | mulcomd | |
33 | 26 31 32 | 3eqtr4d | |
34 | fveqeq2 | |
|
35 | oveq1 | |
|
36 | 35 | eqeq2d | |
37 | 34 36 | anbi12d | |
38 | 37 | rspcev | |
39 | 16 25 33 38 | syl12anc | |
40 | ax-icn | |
|
41 | absi | |
|
42 | it0e0 | |
|
43 | 42 | eqcomi | |
44 | 41 43 | pm3.2i | |
45 | fveqeq2 | |
|
46 | oveq1 | |
|
47 | 46 | eqeq2d | |
48 | 45 47 | anbi12d | |
49 | 48 | rspcev | |
50 | 40 44 49 | mp2an | |
51 | 50 | a1i | |
52 | 7 39 51 | pm2.61ne | |