| Step | Hyp | Ref | Expression | 
						
							| 1 |  | recn |  | 
						
							| 2 |  | 2cn |  | 
						
							| 3 |  | 2ne0 |  | 
						
							| 4 |  | divcan3 |  | 
						
							| 5 | 2 3 4 | mp3an23 |  | 
						
							| 6 | 1 5 | syl |  | 
						
							| 7 | 6 | ad2antlr |  | 
						
							| 8 |  | ltle |  | 
						
							| 9 | 8 | imp |  | 
						
							| 10 |  | abssubge0 |  | 
						
							| 11 | 10 | 3expa |  | 
						
							| 12 | 9 11 | syldan |  | 
						
							| 13 | 12 | oveq2d |  | 
						
							| 14 |  | recn |  | 
						
							| 15 |  | simpr |  | 
						
							| 16 |  | simpl |  | 
						
							| 17 | 15 16 15 | ppncand |  | 
						
							| 18 |  | 2times |  | 
						
							| 19 | 18 | adantl |  | 
						
							| 20 | 17 19 | eqtr4d |  | 
						
							| 21 | 14 1 20 | syl2an |  | 
						
							| 22 | 21 | adantr |  | 
						
							| 23 | 13 22 | eqtrd |  | 
						
							| 24 | 23 | oveq1d |  | 
						
							| 25 |  | ltnle |  | 
						
							| 26 | 25 | biimpa |  | 
						
							| 27 | 26 | iffalsed |  | 
						
							| 28 | 7 24 27 | 3eqtr4rd |  | 
						
							| 29 | 28 | ancom1s |  | 
						
							| 30 |  | divcan3 |  | 
						
							| 31 | 2 3 30 | mp3an23 |  | 
						
							| 32 | 14 31 | syl |  | 
						
							| 33 | 32 | ad2antlr |  | 
						
							| 34 |  | abssuble0 |  | 
						
							| 35 | 34 | 3expa |  | 
						
							| 36 | 35 | oveq2d |  | 
						
							| 37 |  | simpr |  | 
						
							| 38 |  | simpl |  | 
						
							| 39 | 37 38 37 | ppncand |  | 
						
							| 40 |  | addcom |  | 
						
							| 41 | 40 | oveq1d |  | 
						
							| 42 |  | 2times |  | 
						
							| 43 | 42 | adantl |  | 
						
							| 44 | 39 41 43 | 3eqtr4d |  | 
						
							| 45 | 1 14 44 | syl2an |  | 
						
							| 46 | 45 | adantr |  | 
						
							| 47 | 36 46 | eqtrd |  | 
						
							| 48 | 47 | oveq1d |  | 
						
							| 49 |  | iftrue |  | 
						
							| 50 | 49 | adantl |  | 
						
							| 51 | 33 48 50 | 3eqtr4rd |  | 
						
							| 52 |  | simpr |  | 
						
							| 53 |  | simpl |  | 
						
							| 54 | 29 51 52 53 | ltlecasei |  |