Metamath Proof Explorer


Theorem ac6c4

Description: Equivalent of Axiom of Choice. B is a collection B ( x ) of nonempty sets. (Contributed by Mario Carneiro, 22-Mar-2013)

Ref Expression
Hypotheses ac6c4.1 AV
ac6c4.2 BV
Assertion ac6c4 xABffFnAxAfxB

Proof

Step Hyp Ref Expression
1 ac6c4.1 AV
2 ac6c4.2 BV
3 nfv zB
4 nfcsb1v _xz/xB
5 nfcv _x
6 4 5 nfne xz/xB
7 csbeq1a x=zB=z/xB
8 7 neeq1d x=zBz/xB
9 3 6 8 cbvralw xABzAz/xB
10 n0 z/xByyz/xB
11 nfv yzA
12 nfre1 yyxAByz/xB
13 4 nfel2 xyz/xB
14 7 eleq2d x=zyByz/xB
15 13 14 rspce zAyz/xBxAyB
16 eliun yxABxAyB
17 15 16 sylibr zAyz/xByxAB
18 rspe yxAByz/xByxAByz/xB
19 17 18 sylancom zAyz/xByxAByz/xB
20 19 ex zAyz/xByxAByz/xB
21 11 12 20 exlimd zAyyz/xByxAByz/xB
22 10 21 biimtrid zAz/xByxAByz/xB
23 22 ralimia zAz/xBzAyxAByz/xB
24 9 23 sylbi xABzAyxAByz/xB
25 1 2 iunex xABV
26 eleq1 y=fzyz/xBfzz/xB
27 1 25 26 ac6 zAyxAByz/xBff:AxABzAfzz/xB
28 ffn f:AxABfFnA
29 nfv zfxB
30 4 nfel2 xfzz/xB
31 fveq2 x=zfx=fz
32 31 7 eleq12d x=zfxBfzz/xB
33 29 30 32 cbvralw xAfxBzAfzz/xB
34 33 biimpri zAfzz/xBxAfxB
35 28 34 anim12i f:AxABzAfzz/xBfFnAxAfxB
36 35 eximi ff:AxABzAfzz/xBffFnAxAfxB
37 24 27 36 3syl xABffFnAxAfxB