Description: Equivalent of Axiom of Choice. B is a collection B ( x ) of nonempty sets. (Contributed by Mario Carneiro, 22-Mar-2013)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ac6c4.1 | |
|
ac6c4.2 | |
||
Assertion | ac6c4 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ac6c4.1 | |
|
2 | ac6c4.2 | |
|
3 | nfv | |
|
4 | nfcsb1v | |
|
5 | nfcv | |
|
6 | 4 5 | nfne | |
7 | csbeq1a | |
|
8 | 7 | neeq1d | |
9 | 3 6 8 | cbvralw | |
10 | n0 | |
|
11 | nfv | |
|
12 | nfre1 | |
|
13 | 4 | nfel2 | |
14 | 7 | eleq2d | |
15 | 13 14 | rspce | |
16 | eliun | |
|
17 | 15 16 | sylibr | |
18 | rspe | |
|
19 | 17 18 | sylancom | |
20 | 19 | ex | |
21 | 11 12 20 | exlimd | |
22 | 10 21 | biimtrid | |
23 | 22 | ralimia | |
24 | 9 23 | sylbi | |
25 | 1 2 | iunex | |
26 | eleq1 | |
|
27 | 1 25 26 | ac6 | |
28 | ffn | |
|
29 | nfv | |
|
30 | 4 | nfel2 | |
31 | fveq2 | |
|
32 | 31 7 | eleq12d | |
33 | 29 30 32 | cbvralw | |
34 | 33 | biimpri | |
35 | 28 34 | anim12i | |
36 | 35 | eximi | |
37 | 24 27 36 | 3syl | |