Description: Choice in an index union. (Contributed by Thierry Arnoux, 4-May-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | aciunf1.0 | |
|
aciunf1.1 | |
||
Assertion | aciunf1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | aciunf1.0 | |
|
2 | aciunf1.1 | |
|
3 | ssrab2 | |
|
4 | ssexg | |
|
5 | 3 1 4 | sylancr | |
6 | rabid | |
|
7 | 6 | biimpi | |
8 | 7 | adantl | |
9 | 8 | simprd | |
10 | nfrab1 | |
|
11 | 8 | simpld | |
12 | 11 2 | syldan | |
13 | 5 9 10 12 | aciunf1lem | |
14 | eqidd | |
|
15 | nfv | |
|
16 | nfcv | |
|
17 | nfrab1 | |
|
18 | 16 17 | nfdif | |
19 | difrab | |
|
20 | 16 | rabtru | |
21 | 20 | difeq1i | |
22 | truan | |
|
23 | df-ne | |
|
24 | 22 23 | bitr4i | |
25 | 24 | rabbii | |
26 | 19 21 25 | 3eqtr3i | |
27 | 26 | a1i | |
28 | eqidd | |
|
29 | 15 18 10 27 28 | iuneq12df | |
30 | rabid | |
|
31 | 30 | biimpi | |
32 | 31 | adantl | |
33 | 32 | simprd | |
34 | 33 | ralrimiva | |
35 | 17 | iunxdif3 | |
36 | 34 35 | syl | |
37 | 29 36 | eqtr3d | |
38 | eqidd | |
|
39 | 15 18 10 27 38 | iuneq12df | |
40 | 33 | xpeq2d | |
41 | xp0 | |
|
42 | 40 41 | eqtrdi | |
43 | 42 | ralrimiva | |
44 | 17 | iunxdif3 | |
45 | 43 44 | syl | |
46 | 39 45 | eqtr3d | |
47 | 14 37 46 | f1eq123d | |
48 | 37 | raleqdv | |
49 | 47 48 | anbi12d | |
50 | 49 | exbidv | |
51 | 13 50 | mpbid | |