Metamath Proof Explorer


Theorem aciunf1

Description: Choice in an index union. (Contributed by Thierry Arnoux, 4-May-2020)

Ref Expression
Hypotheses aciunf1.0 φAV
aciunf1.1 φjABW
Assertion aciunf1 φff:jAB1-1jAj×BkjAB2ndfk=k

Proof

Step Hyp Ref Expression
1 aciunf1.0 φAV
2 aciunf1.1 φjABW
3 ssrab2 jA|BA
4 ssexg jA|BAAVjA|BV
5 3 1 4 sylancr φjA|BV
6 rabid jjA|BjAB
7 6 biimpi jjA|BjAB
8 7 adantl φjjA|BjAB
9 8 simprd φjjA|BB
10 nfrab1 _jjA|B
11 8 simpld φjjA|BjA
12 11 2 syldan φjjA|BBW
13 5 9 10 12 aciunf1lem φff:jjA|BB1-1jjA|Bj×BkjjA|BB2ndfk=k
14 eqidd φf=f
15 nfv jφ
16 nfcv _jA
17 nfrab1 _jjA|B=
18 16 17 nfdif _jAjA|B=
19 difrab jA|jA|B==jA|¬B=
20 16 rabtru jA|=A
21 20 difeq1i jA|jA|B==AjA|B=
22 truan ¬B=¬B=
23 df-ne B¬B=
24 22 23 bitr4i ¬B=B
25 24 rabbii jA|¬B==jA|B
26 19 21 25 3eqtr3i AjA|B==jA|B
27 26 a1i φAjA|B==jA|B
28 eqidd φB=B
29 15 18 10 27 28 iuneq12df φjAjA|B=B=jjA|BB
30 rabid jjA|B=jAB=
31 30 biimpi jjA|B=jAB=
32 31 adantl φjjA|B=jAB=
33 32 simprd φjjA|B=B=
34 33 ralrimiva φjjA|B=B=
35 17 iunxdif3 jjA|B=B=jAjA|B=B=jAB
36 34 35 syl φjAjA|B=B=jAB
37 29 36 eqtr3d φjjA|BB=jAB
38 eqidd φj×B=j×B
39 15 18 10 27 38 iuneq12df φjAjA|B=j×B=jjA|Bj×B
40 33 xpeq2d φjjA|B=j×B=j×
41 xp0 j×=
42 40 41 eqtrdi φjjA|B=j×B=
43 42 ralrimiva φjjA|B=j×B=
44 17 iunxdif3 jjA|B=j×B=jAjA|B=j×B=jAj×B
45 43 44 syl φjAjA|B=j×B=jAj×B
46 39 45 eqtr3d φjjA|Bj×B=jAj×B
47 14 37 46 f1eq123d φf:jjA|BB1-1jjA|Bj×Bf:jAB1-1jAj×B
48 37 raleqdv φkjjA|BB2ndfk=kkjAB2ndfk=k
49 47 48 anbi12d φf:jjA|BB1-1jjA|Bj×BkjjA|BB2ndfk=kf:jAB1-1jAj×BkjAB2ndfk=k
50 49 exbidv φff:jjA|BB1-1jjA|Bj×BkjjA|BB2ndfk=kff:jAB1-1jAj×BkjAB2ndfk=k
51 13 50 mpbid φff:jAB1-1jAj×BkjAB2ndfk=k