Description: Lemma for ackbij2 . (Contributed by Stefan O'Rear, 19-Nov-2014) (Proof shortened by AV, 18-Jul-2022)
Ref | Expression | ||
---|---|---|---|
Assertion | ackbij1lem5 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | peano2 | |
|
2 | pw2eng | |
|
3 | 1 2 | syl | |
4 | df-suc | |
|
5 | 4 | oveq2i | |
6 | elex | |
|
7 | snex | |
|
8 | 7 | a1i | |
9 | 2onn | |
|
10 | 9 | elexi | |
11 | 10 | a1i | |
12 | nnord | |
|
13 | orddisj | |
|
14 | 12 13 | syl | |
15 | mapunen | |
|
16 | 6 8 11 14 15 | syl31anc | |
17 | ovex | |
|
18 | 17 | enref | |
19 | 2on | |
|
20 | 19 | a1i | |
21 | id | |
|
22 | 20 21 | mapsnend | |
23 | xpen | |
|
24 | 18 22 23 | sylancr | |
25 | entr | |
|
26 | 16 24 25 | syl2anc | |
27 | 5 26 | eqbrtrid | |
28 | 17 10 | xpcomen | |
29 | entr | |
|
30 | 27 28 29 | sylancl | |
31 | 10 | enref | |
32 | pw2eng | |
|
33 | xpen | |
|
34 | 31 32 33 | sylancr | |
35 | 34 | ensymd | |
36 | entr | |
|
37 | 30 35 36 | syl2anc | |
38 | entr | |
|
39 | 3 37 38 | syl2anc | |
40 | xp2dju | |
|
41 | 39 40 | breqtrdi | |
42 | nnfi | |
|
43 | pwfi | |
|
44 | 42 43 | sylib | |
45 | ficardid | |
|
46 | 44 45 | syl | |
47 | djuen | |
|
48 | 46 46 47 | syl2anc | |
49 | 48 | ensymd | |
50 | entr | |
|
51 | 41 49 50 | syl2anc | |
52 | carden2b | |
|
53 | 51 52 | syl | |
54 | ficardom | |
|
55 | 44 54 | syl | |
56 | nnadju | |
|
57 | 55 55 56 | syl2anc | |
58 | 53 57 | eqtrd | |