Metamath Proof Explorer


Theorem ackbij1lem5

Description: Lemma for ackbij2 . (Contributed by Stefan O'Rear, 19-Nov-2014) (Proof shortened by AV, 18-Jul-2022)

Ref Expression
Assertion ackbij1lem5 Aωcard𝒫sucA=card𝒫A+𝑜card𝒫A

Proof

Step Hyp Ref Expression
1 peano2 AωsucAω
2 pw2eng sucAω𝒫sucA2𝑜sucA
3 1 2 syl Aω𝒫sucA2𝑜sucA
4 df-suc sucA=AA
5 4 oveq2i 2𝑜sucA=2𝑜AA
6 elex AωAV
7 snex AV
8 7 a1i AωAV
9 2onn 2𝑜ω
10 9 elexi 2𝑜V
11 10 a1i Aω2𝑜V
12 nnord AωOrdA
13 orddisj OrdAAA=
14 12 13 syl AωAA=
15 mapunen AVAV2𝑜VAA=2𝑜AA2𝑜A×2𝑜A
16 6 8 11 14 15 syl31anc Aω2𝑜AA2𝑜A×2𝑜A
17 ovex 2𝑜AV
18 17 enref 2𝑜A2𝑜A
19 2on 2𝑜On
20 19 a1i Aω2𝑜On
21 id AωAω
22 20 21 mapsnend Aω2𝑜A2𝑜
23 xpen 2𝑜A2𝑜A2𝑜A2𝑜2𝑜A×2𝑜A2𝑜A×2𝑜
24 18 22 23 sylancr Aω2𝑜A×2𝑜A2𝑜A×2𝑜
25 entr 2𝑜AA2𝑜A×2𝑜A2𝑜A×2𝑜A2𝑜A×2𝑜2𝑜AA2𝑜A×2𝑜
26 16 24 25 syl2anc Aω2𝑜AA2𝑜A×2𝑜
27 5 26 eqbrtrid Aω2𝑜sucA2𝑜A×2𝑜
28 17 10 xpcomen 2𝑜A×2𝑜2𝑜×2𝑜A
29 entr 2𝑜sucA2𝑜A×2𝑜2𝑜A×2𝑜2𝑜×2𝑜A2𝑜sucA2𝑜×2𝑜A
30 27 28 29 sylancl Aω2𝑜sucA2𝑜×2𝑜A
31 10 enref 2𝑜2𝑜
32 pw2eng Aω𝒫A2𝑜A
33 xpen 2𝑜2𝑜𝒫A2𝑜A2𝑜×𝒫A2𝑜×2𝑜A
34 31 32 33 sylancr Aω2𝑜×𝒫A2𝑜×2𝑜A
35 34 ensymd Aω2𝑜×2𝑜A2𝑜×𝒫A
36 entr 2𝑜sucA2𝑜×2𝑜A2𝑜×2𝑜A2𝑜×𝒫A2𝑜sucA2𝑜×𝒫A
37 30 35 36 syl2anc Aω2𝑜sucA2𝑜×𝒫A
38 entr 𝒫sucA2𝑜sucA2𝑜sucA2𝑜×𝒫A𝒫sucA2𝑜×𝒫A
39 3 37 38 syl2anc Aω𝒫sucA2𝑜×𝒫A
40 xp2dju 2𝑜×𝒫A=𝒫A⊔︀𝒫A
41 39 40 breqtrdi Aω𝒫sucA𝒫A⊔︀𝒫A
42 nnfi AωAFin
43 pwfi AFin𝒫AFin
44 42 43 sylib Aω𝒫AFin
45 ficardid 𝒫AFincard𝒫A𝒫A
46 44 45 syl Aωcard𝒫A𝒫A
47 djuen card𝒫A𝒫Acard𝒫A𝒫Acard𝒫A⊔︀card𝒫A𝒫A⊔︀𝒫A
48 46 46 47 syl2anc Aωcard𝒫A⊔︀card𝒫A𝒫A⊔︀𝒫A
49 48 ensymd Aω𝒫A⊔︀𝒫Acard𝒫A⊔︀card𝒫A
50 entr 𝒫sucA𝒫A⊔︀𝒫A𝒫A⊔︀𝒫Acard𝒫A⊔︀card𝒫A𝒫sucAcard𝒫A⊔︀card𝒫A
51 41 49 50 syl2anc Aω𝒫sucAcard𝒫A⊔︀card𝒫A
52 carden2b 𝒫sucAcard𝒫A⊔︀card𝒫Acard𝒫sucA=cardcard𝒫A⊔︀card𝒫A
53 51 52 syl Aωcard𝒫sucA=cardcard𝒫A⊔︀card𝒫A
54 ficardom 𝒫AFincard𝒫Aω
55 44 54 syl Aωcard𝒫Aω
56 nnadju card𝒫Aωcard𝒫Aωcardcard𝒫A⊔︀card𝒫A=card𝒫A+𝑜card𝒫A
57 55 55 56 syl2anc Aωcardcard𝒫A⊔︀card𝒫A=card𝒫A+𝑜card𝒫A
58 53 57 eqtrd Aωcard𝒫sucA=card𝒫A+𝑜card𝒫A