Metamath Proof Explorer


Theorem ackval42

Description: The Ackermann function at (4,2). (Contributed by AV, 9-May-2024)

Ref Expression
Assertion ackval42 Could not format assertion : No typesetting found for |- ( ( Ack ` 4 ) ` 2 ) = ( ( 2 ^ ; ; ; ; 6 5 5 3 6 ) - 3 ) with typecode |-

Proof

Step Hyp Ref Expression
1 df-4 4=3+1
2 1 fveq2i Could not format ( Ack ` 4 ) = ( Ack ` ( 3 + 1 ) ) : No typesetting found for |- ( Ack ` 4 ) = ( Ack ` ( 3 + 1 ) ) with typecode |-
3 df-2 2=1+1
4 2 3 fveq12i Could not format ( ( Ack ` 4 ) ` 2 ) = ( ( Ack ` ( 3 + 1 ) ) ` ( 1 + 1 ) ) : No typesetting found for |- ( ( Ack ` 4 ) ` 2 ) = ( ( Ack ` ( 3 + 1 ) ) ` ( 1 + 1 ) ) with typecode |-
5 3nn0 30
6 1nn0 10
7 ackvalsucsucval Could not format ( ( 3 e. NN0 /\ 1 e. NN0 ) -> ( ( Ack ` ( 3 + 1 ) ) ` ( 1 + 1 ) ) = ( ( Ack ` 3 ) ` ( ( Ack ` ( 3 + 1 ) ) ` 1 ) ) ) : No typesetting found for |- ( ( 3 e. NN0 /\ 1 e. NN0 ) -> ( ( Ack ` ( 3 + 1 ) ) ` ( 1 + 1 ) ) = ( ( Ack ` 3 ) ` ( ( Ack ` ( 3 + 1 ) ) ` 1 ) ) ) with typecode |-
8 5 6 7 mp2an Could not format ( ( Ack ` ( 3 + 1 ) ) ` ( 1 + 1 ) ) = ( ( Ack ` 3 ) ` ( ( Ack ` ( 3 + 1 ) ) ` 1 ) ) : No typesetting found for |- ( ( Ack ` ( 3 + 1 ) ) ` ( 1 + 1 ) ) = ( ( Ack ` 3 ) ` ( ( Ack ` ( 3 + 1 ) ) ` 1 ) ) with typecode |-
9 3p1e4 3+1=4
10 9 fveq2i Could not format ( Ack ` ( 3 + 1 ) ) = ( Ack ` 4 ) : No typesetting found for |- ( Ack ` ( 3 + 1 ) ) = ( Ack ` 4 ) with typecode |-
11 10 fveq1i Could not format ( ( Ack ` ( 3 + 1 ) ) ` 1 ) = ( ( Ack ` 4 ) ` 1 ) : No typesetting found for |- ( ( Ack ` ( 3 + 1 ) ) ` 1 ) = ( ( Ack ` 4 ) ` 1 ) with typecode |-
12 ackval41a Could not format ( ( Ack ` 4 ) ` 1 ) = ( ( 2 ^ ; 1 6 ) - 3 ) : No typesetting found for |- ( ( Ack ` 4 ) ` 1 ) = ( ( 2 ^ ; 1 6 ) - 3 ) with typecode |-
13 11 12 eqtri Could not format ( ( Ack ` ( 3 + 1 ) ) ` 1 ) = ( ( 2 ^ ; 1 6 ) - 3 ) : No typesetting found for |- ( ( Ack ` ( 3 + 1 ) ) ` 1 ) = ( ( 2 ^ ; 1 6 ) - 3 ) with typecode |-
14 13 fveq2i Could not format ( ( Ack ` 3 ) ` ( ( Ack ` ( 3 + 1 ) ) ` 1 ) ) = ( ( Ack ` 3 ) ` ( ( 2 ^ ; 1 6 ) - 3 ) ) : No typesetting found for |- ( ( Ack ` 3 ) ` ( ( Ack ` ( 3 + 1 ) ) ` 1 ) ) = ( ( Ack ` 3 ) ` ( ( 2 ^ ; 1 6 ) - 3 ) ) with typecode |-
15 2cn 2
16 6nn0 60
17 6 16 deccl 160
18 expcl 2160216
19 15 17 18 mp2an 216
20 3cn 3
21 ackval3 Could not format ( Ack ` 3 ) = ( n e. NN0 |-> ( ( 2 ^ ( n + 3 ) ) - 3 ) ) : No typesetting found for |- ( Ack ` 3 ) = ( n e. NN0 |-> ( ( 2 ^ ( n + 3 ) ) - 3 ) ) with typecode |-
22 oveq1 n=2163n+3=216-3+3
23 npcan 2163216-3+3=216
24 22 23 sylan9eqr 2163n=2163n+3=216
25 24 oveq2d 2163n=21632n+3=2216
26 25 oveq1d 2163n=21632n+33=22163
27 3re 3
28 4re 4
29 3lt4 3<4
30 27 28 29 ltleii 34
31 sq2 22=4
32 30 31 breqtrri 322
33 2re 2
34 1le2 12
35 17 nn0zi 16
36 1nn 1
37 2nn0 20
38 9re 9
39 2lt9 2<9
40 33 38 39 ltleii 29
41 36 16 37 40 declei 216
42 2z 2
43 42 eluz1i 16216216
44 35 41 43 mpbir2an 162
45 leexp2a 21216222216
46 33 34 44 45 mp3an 22216
47 4nn0 40
48 31 47 eqeltri 220
49 48 nn0rei 22
50 37 17 nn0expcli 2160
51 50 nn0rei 216
52 27 49 51 letri 322222163216
53 32 46 52 mp2an 3216
54 nn0sub 302160321621630
55 5 50 54 mp2an 321621630
56 53 55 mpbi 21630
57 56 a1i 216321630
58 ovexd 216322163V
59 21 26 57 58 fvmptd2 Could not format ( ( ( 2 ^ ; 1 6 ) e. CC /\ 3 e. CC ) -> ( ( Ack ` 3 ) ` ( ( 2 ^ ; 1 6 ) - 3 ) ) = ( ( 2 ^ ( 2 ^ ; 1 6 ) ) - 3 ) ) : No typesetting found for |- ( ( ( 2 ^ ; 1 6 ) e. CC /\ 3 e. CC ) -> ( ( Ack ` 3 ) ` ( ( 2 ^ ; 1 6 ) - 3 ) ) = ( ( 2 ^ ( 2 ^ ; 1 6 ) ) - 3 ) ) with typecode |-
60 19 20 59 mp2an Could not format ( ( Ack ` 3 ) ` ( ( 2 ^ ; 1 6 ) - 3 ) ) = ( ( 2 ^ ( 2 ^ ; 1 6 ) ) - 3 ) : No typesetting found for |- ( ( Ack ` 3 ) ` ( ( 2 ^ ; 1 6 ) - 3 ) ) = ( ( 2 ^ ( 2 ^ ; 1 6 ) ) - 3 ) with typecode |-
61 2exp16 216=65536
62 61 oveq2i 2216=265536
63 62 oveq1i 22163=2655363
64 14 60 63 3eqtri Could not format ( ( Ack ` 3 ) ` ( ( Ack ` ( 3 + 1 ) ) ` 1 ) ) = ( ( 2 ^ ; ; ; ; 6 5 5 3 6 ) - 3 ) : No typesetting found for |- ( ( Ack ` 3 ) ` ( ( Ack ` ( 3 + 1 ) ) ` 1 ) ) = ( ( 2 ^ ; ; ; ; 6 5 5 3 6 ) - 3 ) with typecode |-
65 4 8 64 3eqtri Could not format ( ( Ack ` 4 ) ` 2 ) = ( ( 2 ^ ; ; ; ; 6 5 5 3 6 ) - 3 ) : No typesetting found for |- ( ( Ack ` 4 ) ` 2 ) = ( ( 2 ^ ; ; ; ; 6 5 5 3 6 ) - 3 ) with typecode |-