| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-4 |
|- 4 = ( 3 + 1 ) |
| 2 |
1
|
fveq2i |
|- ( Ack ` 4 ) = ( Ack ` ( 3 + 1 ) ) |
| 3 |
|
df-2 |
|- 2 = ( 1 + 1 ) |
| 4 |
2 3
|
fveq12i |
|- ( ( Ack ` 4 ) ` 2 ) = ( ( Ack ` ( 3 + 1 ) ) ` ( 1 + 1 ) ) |
| 5 |
|
3nn0 |
|- 3 e. NN0 |
| 6 |
|
1nn0 |
|- 1 e. NN0 |
| 7 |
|
ackvalsucsucval |
|- ( ( 3 e. NN0 /\ 1 e. NN0 ) -> ( ( Ack ` ( 3 + 1 ) ) ` ( 1 + 1 ) ) = ( ( Ack ` 3 ) ` ( ( Ack ` ( 3 + 1 ) ) ` 1 ) ) ) |
| 8 |
5 6 7
|
mp2an |
|- ( ( Ack ` ( 3 + 1 ) ) ` ( 1 + 1 ) ) = ( ( Ack ` 3 ) ` ( ( Ack ` ( 3 + 1 ) ) ` 1 ) ) |
| 9 |
|
3p1e4 |
|- ( 3 + 1 ) = 4 |
| 10 |
9
|
fveq2i |
|- ( Ack ` ( 3 + 1 ) ) = ( Ack ` 4 ) |
| 11 |
10
|
fveq1i |
|- ( ( Ack ` ( 3 + 1 ) ) ` 1 ) = ( ( Ack ` 4 ) ` 1 ) |
| 12 |
|
ackval41a |
|- ( ( Ack ` 4 ) ` 1 ) = ( ( 2 ^ ; 1 6 ) - 3 ) |
| 13 |
11 12
|
eqtri |
|- ( ( Ack ` ( 3 + 1 ) ) ` 1 ) = ( ( 2 ^ ; 1 6 ) - 3 ) |
| 14 |
13
|
fveq2i |
|- ( ( Ack ` 3 ) ` ( ( Ack ` ( 3 + 1 ) ) ` 1 ) ) = ( ( Ack ` 3 ) ` ( ( 2 ^ ; 1 6 ) - 3 ) ) |
| 15 |
|
2cn |
|- 2 e. CC |
| 16 |
|
6nn0 |
|- 6 e. NN0 |
| 17 |
6 16
|
deccl |
|- ; 1 6 e. NN0 |
| 18 |
|
expcl |
|- ( ( 2 e. CC /\ ; 1 6 e. NN0 ) -> ( 2 ^ ; 1 6 ) e. CC ) |
| 19 |
15 17 18
|
mp2an |
|- ( 2 ^ ; 1 6 ) e. CC |
| 20 |
|
3cn |
|- 3 e. CC |
| 21 |
|
ackval3 |
|- ( Ack ` 3 ) = ( n e. NN0 |-> ( ( 2 ^ ( n + 3 ) ) - 3 ) ) |
| 22 |
|
oveq1 |
|- ( n = ( ( 2 ^ ; 1 6 ) - 3 ) -> ( n + 3 ) = ( ( ( 2 ^ ; 1 6 ) - 3 ) + 3 ) ) |
| 23 |
|
npcan |
|- ( ( ( 2 ^ ; 1 6 ) e. CC /\ 3 e. CC ) -> ( ( ( 2 ^ ; 1 6 ) - 3 ) + 3 ) = ( 2 ^ ; 1 6 ) ) |
| 24 |
22 23
|
sylan9eqr |
|- ( ( ( ( 2 ^ ; 1 6 ) e. CC /\ 3 e. CC ) /\ n = ( ( 2 ^ ; 1 6 ) - 3 ) ) -> ( n + 3 ) = ( 2 ^ ; 1 6 ) ) |
| 25 |
24
|
oveq2d |
|- ( ( ( ( 2 ^ ; 1 6 ) e. CC /\ 3 e. CC ) /\ n = ( ( 2 ^ ; 1 6 ) - 3 ) ) -> ( 2 ^ ( n + 3 ) ) = ( 2 ^ ( 2 ^ ; 1 6 ) ) ) |
| 26 |
25
|
oveq1d |
|- ( ( ( ( 2 ^ ; 1 6 ) e. CC /\ 3 e. CC ) /\ n = ( ( 2 ^ ; 1 6 ) - 3 ) ) -> ( ( 2 ^ ( n + 3 ) ) - 3 ) = ( ( 2 ^ ( 2 ^ ; 1 6 ) ) - 3 ) ) |
| 27 |
|
3re |
|- 3 e. RR |
| 28 |
|
4re |
|- 4 e. RR |
| 29 |
|
3lt4 |
|- 3 < 4 |
| 30 |
27 28 29
|
ltleii |
|- 3 <_ 4 |
| 31 |
|
sq2 |
|- ( 2 ^ 2 ) = 4 |
| 32 |
30 31
|
breqtrri |
|- 3 <_ ( 2 ^ 2 ) |
| 33 |
|
2re |
|- 2 e. RR |
| 34 |
|
1le2 |
|- 1 <_ 2 |
| 35 |
17
|
nn0zi |
|- ; 1 6 e. ZZ |
| 36 |
|
1nn |
|- 1 e. NN |
| 37 |
|
2nn0 |
|- 2 e. NN0 |
| 38 |
|
9re |
|- 9 e. RR |
| 39 |
|
2lt9 |
|- 2 < 9 |
| 40 |
33 38 39
|
ltleii |
|- 2 <_ 9 |
| 41 |
36 16 37 40
|
declei |
|- 2 <_ ; 1 6 |
| 42 |
|
2z |
|- 2 e. ZZ |
| 43 |
42
|
eluz1i |
|- ( ; 1 6 e. ( ZZ>= ` 2 ) <-> ( ; 1 6 e. ZZ /\ 2 <_ ; 1 6 ) ) |
| 44 |
35 41 43
|
mpbir2an |
|- ; 1 6 e. ( ZZ>= ` 2 ) |
| 45 |
|
leexp2a |
|- ( ( 2 e. RR /\ 1 <_ 2 /\ ; 1 6 e. ( ZZ>= ` 2 ) ) -> ( 2 ^ 2 ) <_ ( 2 ^ ; 1 6 ) ) |
| 46 |
33 34 44 45
|
mp3an |
|- ( 2 ^ 2 ) <_ ( 2 ^ ; 1 6 ) |
| 47 |
|
4nn0 |
|- 4 e. NN0 |
| 48 |
31 47
|
eqeltri |
|- ( 2 ^ 2 ) e. NN0 |
| 49 |
48
|
nn0rei |
|- ( 2 ^ 2 ) e. RR |
| 50 |
37 17
|
nn0expcli |
|- ( 2 ^ ; 1 6 ) e. NN0 |
| 51 |
50
|
nn0rei |
|- ( 2 ^ ; 1 6 ) e. RR |
| 52 |
27 49 51
|
letri |
|- ( ( 3 <_ ( 2 ^ 2 ) /\ ( 2 ^ 2 ) <_ ( 2 ^ ; 1 6 ) ) -> 3 <_ ( 2 ^ ; 1 6 ) ) |
| 53 |
32 46 52
|
mp2an |
|- 3 <_ ( 2 ^ ; 1 6 ) |
| 54 |
|
nn0sub |
|- ( ( 3 e. NN0 /\ ( 2 ^ ; 1 6 ) e. NN0 ) -> ( 3 <_ ( 2 ^ ; 1 6 ) <-> ( ( 2 ^ ; 1 6 ) - 3 ) e. NN0 ) ) |
| 55 |
5 50 54
|
mp2an |
|- ( 3 <_ ( 2 ^ ; 1 6 ) <-> ( ( 2 ^ ; 1 6 ) - 3 ) e. NN0 ) |
| 56 |
53 55
|
mpbi |
|- ( ( 2 ^ ; 1 6 ) - 3 ) e. NN0 |
| 57 |
56
|
a1i |
|- ( ( ( 2 ^ ; 1 6 ) e. CC /\ 3 e. CC ) -> ( ( 2 ^ ; 1 6 ) - 3 ) e. NN0 ) |
| 58 |
|
ovexd |
|- ( ( ( 2 ^ ; 1 6 ) e. CC /\ 3 e. CC ) -> ( ( 2 ^ ( 2 ^ ; 1 6 ) ) - 3 ) e. _V ) |
| 59 |
21 26 57 58
|
fvmptd2 |
|- ( ( ( 2 ^ ; 1 6 ) e. CC /\ 3 e. CC ) -> ( ( Ack ` 3 ) ` ( ( 2 ^ ; 1 6 ) - 3 ) ) = ( ( 2 ^ ( 2 ^ ; 1 6 ) ) - 3 ) ) |
| 60 |
19 20 59
|
mp2an |
|- ( ( Ack ` 3 ) ` ( ( 2 ^ ; 1 6 ) - 3 ) ) = ( ( 2 ^ ( 2 ^ ; 1 6 ) ) - 3 ) |
| 61 |
|
2exp16 |
|- ( 2 ^ ; 1 6 ) = ; ; ; ; 6 5 5 3 6 |
| 62 |
61
|
oveq2i |
|- ( 2 ^ ( 2 ^ ; 1 6 ) ) = ( 2 ^ ; ; ; ; 6 5 5 3 6 ) |
| 63 |
62
|
oveq1i |
|- ( ( 2 ^ ( 2 ^ ; 1 6 ) ) - 3 ) = ( ( 2 ^ ; ; ; ; 6 5 5 3 6 ) - 3 ) |
| 64 |
14 60 63
|
3eqtri |
|- ( ( Ack ` 3 ) ` ( ( Ack ` ( 3 + 1 ) ) ` 1 ) ) = ( ( 2 ^ ; ; ; ; 6 5 5 3 6 ) - 3 ) |
| 65 |
4 8 64
|
3eqtri |
|- ( ( Ack ` 4 ) ` 2 ) = ( ( 2 ^ ; ; ; ; 6 5 5 3 6 ) - 3 ) |