Metamath Proof Explorer


Theorem addsproplem4

Description: Lemma for surreal addition properties. Show the second half of the inductive hypothesis when Y is older than Z . (Contributed by Scott Fenton, 21-Jan-2025)

Ref Expression
Hypotheses addsproplem.1 No typesetting found for |- ( ph -> A. x e. No A. y e. No A. z e. No ( ( ( ( bday ` x ) +no ( bday ` y ) ) u. ( ( bday ` x ) +no ( bday ` z ) ) ) e. ( ( ( bday ` X ) +no ( bday ` Y ) ) u. ( ( bday ` X ) +no ( bday ` Z ) ) ) -> ( ( x +s y ) e. No /\ ( y ( y +s x )
addspropord.2 φXNo
addspropord.3 φYNo
addspropord.4 φZNo
addspropord.5 φY<sZ
addsproplem4.6 φbdayYbdayZ
Assertion addsproplem4 Could not format assertion : No typesetting found for |- ( ph -> ( Y +s X )

Proof

Step Hyp Ref Expression
1 addsproplem.1 Could not format ( ph -> A. x e. No A. y e. No A. z e. No ( ( ( ( bday ` x ) +no ( bday ` y ) ) u. ( ( bday ` x ) +no ( bday ` z ) ) ) e. ( ( ( bday ` X ) +no ( bday ` Y ) ) u. ( ( bday ` X ) +no ( bday ` Z ) ) ) -> ( ( x +s y ) e. No /\ ( y ( y +s x ) A. x e. No A. y e. No A. z e. No ( ( ( ( bday ` x ) +no ( bday ` y ) ) u. ( ( bday ` x ) +no ( bday ` z ) ) ) e. ( ( ( bday ` X ) +no ( bday ` Y ) ) u. ( ( bday ` X ) +no ( bday ` Z ) ) ) -> ( ( x +s y ) e. No /\ ( y ( y +s x )
2 addspropord.2 φXNo
3 addspropord.3 φYNo
4 addspropord.4 φZNo
5 addspropord.5 φY<sZ
6 addsproplem4.6 φbdayYbdayZ
7 uncom Could not format ( ( ( bday ` X ) +no ( bday ` Y ) ) u. ( ( bday ` X ) +no ( bday ` Z ) ) ) = ( ( ( bday ` X ) +no ( bday ` Z ) ) u. ( ( bday ` X ) +no ( bday ` Y ) ) ) : No typesetting found for |- ( ( ( bday ` X ) +no ( bday ` Y ) ) u. ( ( bday ` X ) +no ( bday ` Z ) ) ) = ( ( ( bday ` X ) +no ( bday ` Z ) ) u. ( ( bday ` X ) +no ( bday ` Y ) ) ) with typecode |-
8 7 eleq2i Could not format ( ( ( ( bday ` x ) +no ( bday ` y ) ) u. ( ( bday ` x ) +no ( bday ` z ) ) ) e. ( ( ( bday ` X ) +no ( bday ` Y ) ) u. ( ( bday ` X ) +no ( bday ` Z ) ) ) <-> ( ( ( bday ` x ) +no ( bday ` y ) ) u. ( ( bday ` x ) +no ( bday ` z ) ) ) e. ( ( ( bday ` X ) +no ( bday ` Z ) ) u. ( ( bday ` X ) +no ( bday ` Y ) ) ) ) : No typesetting found for |- ( ( ( ( bday ` x ) +no ( bday ` y ) ) u. ( ( bday ` x ) +no ( bday ` z ) ) ) e. ( ( ( bday ` X ) +no ( bday ` Y ) ) u. ( ( bday ` X ) +no ( bday ` Z ) ) ) <-> ( ( ( bday ` x ) +no ( bday ` y ) ) u. ( ( bday ` x ) +no ( bday ` z ) ) ) e. ( ( ( bday ` X ) +no ( bday ` Z ) ) u. ( ( bday ` X ) +no ( bday ` Y ) ) ) ) with typecode |-
9 8 imbi1i Could not format ( ( ( ( ( bday ` x ) +no ( bday ` y ) ) u. ( ( bday ` x ) +no ( bday ` z ) ) ) e. ( ( ( bday ` X ) +no ( bday ` Y ) ) u. ( ( bday ` X ) +no ( bday ` Z ) ) ) -> ( ( x +s y ) e. No /\ ( y ( y +s x ) ( ( ( ( bday ` x ) +no ( bday ` y ) ) u. ( ( bday ` x ) +no ( bday ` z ) ) ) e. ( ( ( bday ` X ) +no ( bday ` Z ) ) u. ( ( bday ` X ) +no ( bday ` Y ) ) ) -> ( ( x +s y ) e. No /\ ( y ( y +s x ) ( ( x +s y ) e. No /\ ( y ( y +s x ) ( ( ( ( bday ` x ) +no ( bday ` y ) ) u. ( ( bday ` x ) +no ( bday ` z ) ) ) e. ( ( ( bday ` X ) +no ( bday ` Z ) ) u. ( ( bday ` X ) +no ( bday ` Y ) ) ) -> ( ( x +s y ) e. No /\ ( y ( y +s x )
10 9 ralbii Could not format ( A. z e. No ( ( ( ( bday ` x ) +no ( bday ` y ) ) u. ( ( bday ` x ) +no ( bday ` z ) ) ) e. ( ( ( bday ` X ) +no ( bday ` Y ) ) u. ( ( bday ` X ) +no ( bday ` Z ) ) ) -> ( ( x +s y ) e. No /\ ( y ( y +s x ) A. z e. No ( ( ( ( bday ` x ) +no ( bday ` y ) ) u. ( ( bday ` x ) +no ( bday ` z ) ) ) e. ( ( ( bday ` X ) +no ( bday ` Z ) ) u. ( ( bday ` X ) +no ( bday ` Y ) ) ) -> ( ( x +s y ) e. No /\ ( y ( y +s x ) ( ( x +s y ) e. No /\ ( y ( y +s x ) A. z e. No ( ( ( ( bday ` x ) +no ( bday ` y ) ) u. ( ( bday ` x ) +no ( bday ` z ) ) ) e. ( ( ( bday ` X ) +no ( bday ` Z ) ) u. ( ( bday ` X ) +no ( bday ` Y ) ) ) -> ( ( x +s y ) e. No /\ ( y ( y +s x )
11 10 2ralbii Could not format ( A. x e. No A. y e. No A. z e. No ( ( ( ( bday ` x ) +no ( bday ` y ) ) u. ( ( bday ` x ) +no ( bday ` z ) ) ) e. ( ( ( bday ` X ) +no ( bday ` Y ) ) u. ( ( bday ` X ) +no ( bday ` Z ) ) ) -> ( ( x +s y ) e. No /\ ( y ( y +s x ) A. x e. No A. y e. No A. z e. No ( ( ( ( bday ` x ) +no ( bday ` y ) ) u. ( ( bday ` x ) +no ( bday ` z ) ) ) e. ( ( ( bday ` X ) +no ( bday ` Z ) ) u. ( ( bday ` X ) +no ( bday ` Y ) ) ) -> ( ( x +s y ) e. No /\ ( y ( y +s x ) ( ( x +s y ) e. No /\ ( y ( y +s x ) A. x e. No A. y e. No A. z e. No ( ( ( ( bday ` x ) +no ( bday ` y ) ) u. ( ( bday ` x ) +no ( bday ` z ) ) ) e. ( ( ( bday ` X ) +no ( bday ` Z ) ) u. ( ( bday ` X ) +no ( bday ` Y ) ) ) -> ( ( x +s y ) e. No /\ ( y ( y +s x )
12 1 11 sylib Could not format ( ph -> A. x e. No A. y e. No A. z e. No ( ( ( ( bday ` x ) +no ( bday ` y ) ) u. ( ( bday ` x ) +no ( bday ` z ) ) ) e. ( ( ( bday ` X ) +no ( bday ` Z ) ) u. ( ( bday ` X ) +no ( bday ` Y ) ) ) -> ( ( x +s y ) e. No /\ ( y ( y +s x ) A. x e. No A. y e. No A. z e. No ( ( ( ( bday ` x ) +no ( bday ` y ) ) u. ( ( bday ` x ) +no ( bday ` z ) ) ) e. ( ( ( bday ` X ) +no ( bday ` Z ) ) u. ( ( bday ` X ) +no ( bday ` Y ) ) ) -> ( ( x +s y ) e. No /\ ( y ( y +s x )
13 12 2 4 addsproplem3 Could not format ( ph -> ( ( X +s Z ) e. No /\ ( { a | E. c e. ( _Left ` X ) a = ( c +s Z ) } u. { b | E. d e. ( _Left ` Z ) b = ( X +s d ) } ) < ( ( X +s Z ) e. No /\ ( { a | E. c e. ( _Left ` X ) a = ( c +s Z ) } u. { b | E. d e. ( _Left ` Z ) b = ( X +s d ) } ) <
14 13 simp2d Could not format ( ph -> ( { a | E. c e. ( _Left ` X ) a = ( c +s Z ) } u. { b | E. d e. ( _Left ` Z ) b = ( X +s d ) } ) < ( { a | E. c e. ( _Left ` X ) a = ( c +s Z ) } u. { b | E. d e. ( _Left ` Z ) b = ( X +s d ) } ) <
15 bdayelon bdayZOn
16 oldbday bdayZOnYNoYOldbdayZbdayYbdayZ
17 15 3 16 sylancr φYOldbdayZbdayYbdayZ
18 6 17 mpbird φYOldbdayZ
19 breq1 y=Yy<sZY<sZ
20 leftval Could not format ( _Left ` Z ) = { y e. ( _Old ` ( bday ` Z ) ) | y
21 19 20 elrab2 Could not format ( Y e. ( _Left ` Z ) <-> ( Y e. ( _Old ` ( bday ` Z ) ) /\ Y ( Y e. ( _Old ` ( bday ` Z ) ) /\ Y
22 18 5 21 sylanbrc Could not format ( ph -> Y e. ( _Left ` Z ) ) : No typesetting found for |- ( ph -> Y e. ( _Left ` Z ) ) with typecode |-
23 eqid Could not format ( X +s Y ) = ( X +s Y ) : No typesetting found for |- ( X +s Y ) = ( X +s Y ) with typecode |-
24 oveq2 Could not format ( d = Y -> ( X +s d ) = ( X +s Y ) ) : No typesetting found for |- ( d = Y -> ( X +s d ) = ( X +s Y ) ) with typecode |-
25 24 rspceeqv Could not format ( ( Y e. ( _Left ` Z ) /\ ( X +s Y ) = ( X +s Y ) ) -> E. d e. ( _Left ` Z ) ( X +s Y ) = ( X +s d ) ) : No typesetting found for |- ( ( Y e. ( _Left ` Z ) /\ ( X +s Y ) = ( X +s Y ) ) -> E. d e. ( _Left ` Z ) ( X +s Y ) = ( X +s d ) ) with typecode |-
26 22 23 25 sylancl Could not format ( ph -> E. d e. ( _Left ` Z ) ( X +s Y ) = ( X +s d ) ) : No typesetting found for |- ( ph -> E. d e. ( _Left ` Z ) ( X +s Y ) = ( X +s d ) ) with typecode |-
27 ovex Could not format ( X +s Y ) e. _V : No typesetting found for |- ( X +s Y ) e. _V with typecode |-
28 eqeq1 Could not format ( b = ( X +s Y ) -> ( b = ( X +s d ) <-> ( X +s Y ) = ( X +s d ) ) ) : No typesetting found for |- ( b = ( X +s Y ) -> ( b = ( X +s d ) <-> ( X +s Y ) = ( X +s d ) ) ) with typecode |-
29 28 rexbidv Could not format ( b = ( X +s Y ) -> ( E. d e. ( _Left ` Z ) b = ( X +s d ) <-> E. d e. ( _Left ` Z ) ( X +s Y ) = ( X +s d ) ) ) : No typesetting found for |- ( b = ( X +s Y ) -> ( E. d e. ( _Left ` Z ) b = ( X +s d ) <-> E. d e. ( _Left ` Z ) ( X +s Y ) = ( X +s d ) ) ) with typecode |-
30 27 29 elab Could not format ( ( X +s Y ) e. { b | E. d e. ( _Left ` Z ) b = ( X +s d ) } <-> E. d e. ( _Left ` Z ) ( X +s Y ) = ( X +s d ) ) : No typesetting found for |- ( ( X +s Y ) e. { b | E. d e. ( _Left ` Z ) b = ( X +s d ) } <-> E. d e. ( _Left ` Z ) ( X +s Y ) = ( X +s d ) ) with typecode |-
31 26 30 sylibr Could not format ( ph -> ( X +s Y ) e. { b | E. d e. ( _Left ` Z ) b = ( X +s d ) } ) : No typesetting found for |- ( ph -> ( X +s Y ) e. { b | E. d e. ( _Left ` Z ) b = ( X +s d ) } ) with typecode |-
32 elun2 Could not format ( ( X +s Y ) e. { b | E. d e. ( _Left ` Z ) b = ( X +s d ) } -> ( X +s Y ) e. ( { a | E. c e. ( _Left ` X ) a = ( c +s Z ) } u. { b | E. d e. ( _Left ` Z ) b = ( X +s d ) } ) ) : No typesetting found for |- ( ( X +s Y ) e. { b | E. d e. ( _Left ` Z ) b = ( X +s d ) } -> ( X +s Y ) e. ( { a | E. c e. ( _Left ` X ) a = ( c +s Z ) } u. { b | E. d e. ( _Left ` Z ) b = ( X +s d ) } ) ) with typecode |-
33 31 32 syl Could not format ( ph -> ( X +s Y ) e. ( { a | E. c e. ( _Left ` X ) a = ( c +s Z ) } u. { b | E. d e. ( _Left ` Z ) b = ( X +s d ) } ) ) : No typesetting found for |- ( ph -> ( X +s Y ) e. ( { a | E. c e. ( _Left ` X ) a = ( c +s Z ) } u. { b | E. d e. ( _Left ` Z ) b = ( X +s d ) } ) ) with typecode |-
34 ovex Could not format ( X +s Z ) e. _V : No typesetting found for |- ( X +s Z ) e. _V with typecode |-
35 34 snid Could not format ( X +s Z ) e. { ( X +s Z ) } : No typesetting found for |- ( X +s Z ) e. { ( X +s Z ) } with typecode |-
36 35 a1i Could not format ( ph -> ( X +s Z ) e. { ( X +s Z ) } ) : No typesetting found for |- ( ph -> ( X +s Z ) e. { ( X +s Z ) } ) with typecode |-
37 14 33 36 ssltsepcd Could not format ( ph -> ( X +s Y ) ( X +s Y )
38 3 2 addscomd Could not format ( ph -> ( Y +s X ) = ( X +s Y ) ) : No typesetting found for |- ( ph -> ( Y +s X ) = ( X +s Y ) ) with typecode |-
39 4 2 addscomd Could not format ( ph -> ( Z +s X ) = ( X +s Z ) ) : No typesetting found for |- ( ph -> ( Z +s X ) = ( X +s Z ) ) with typecode |-
40 37 38 39 3brtr4d Could not format ( ph -> ( Y +s X ) ( Y +s X )