Description: The adjoint of an operator is linear. Proposition 1 of AkhiezerGlazman p. 80. (Contributed by NM, 17-Jun-2006) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | adjlnop | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmadjrn | |
|
2 | dmadjop | |
|
3 | 1 2 | syl | |
4 | simp2 | |
|
5 | adjcl | |
|
6 | hvmulcl | |
|
7 | 5 6 | sylan2 | |
8 | 7 | an12s | |
9 | 8 | adantrr | |
10 | 9 | 3adant2 | |
11 | adjcl | |
|
12 | 11 | adantrl | |
13 | 12 | 3adant2 | |
14 | his7 | |
|
15 | 4 10 13 14 | syl3anc | |
16 | adj2 | |
|
17 | 16 | 3adant3l | |
18 | 17 | oveq2d | |
19 | simp3l | |
|
20 | dmadjop | |
|
21 | 20 | ffvelcdmda | |
22 | 21 | 3adant3 | |
23 | simp3r | |
|
24 | his5 | |
|
25 | 19 22 23 24 | syl3anc | |
26 | simp2 | |
|
27 | 5 | adantrl | |
28 | 27 | 3adant2 | |
29 | his5 | |
|
30 | 19 26 28 29 | syl3anc | |
31 | 18 25 30 | 3eqtr4d | |
32 | 31 | 3adant3r | |
33 | adj2 | |
|
34 | 33 | 3adant3l | |
35 | 32 34 | oveq12d | |
36 | 21 | 3adant3 | |
37 | hvmulcl | |
|
38 | 37 | adantr | |
39 | 38 | 3ad2ant3 | |
40 | simp3r | |
|
41 | his7 | |
|
42 | 36 39 40 41 | syl3anc | |
43 | hvaddcl | |
|
44 | 37 43 | sylan | |
45 | adj2 | |
|
46 | 44 45 | syl3an3 | |
47 | 42 46 | eqtr3d | |
48 | 15 35 47 | 3eqtr2rd | |
49 | 48 | 3com23 | |
50 | 49 | 3expa | |
51 | 50 | ralrimiva | |
52 | adjcl | |
|
53 | 44 52 | sylan2 | |
54 | hvaddcl | |
|
55 | 8 11 54 | syl2an | |
56 | 55 | anandis | |
57 | hial2eq2 | |
|
58 | 53 56 57 | syl2anc | |
59 | 51 58 | mpbid | |
60 | 59 | exp32 | |
61 | 60 | ralrimdv | |
62 | 61 | ralrimivv | |
63 | ellnop | |
|
64 | 3 62 63 | sylanbrc | |