Metamath Proof Explorer


Theorem adjlnop

Description: The adjoint of an operator is linear. Proposition 1 of AkhiezerGlazman p. 80. (Contributed by NM, 17-Jun-2006) (New usage is discouraged.)

Ref Expression
Assertion adjlnop TdomadjhadjhTLinOp

Proof

Step Hyp Ref Expression
1 dmadjrn TdomadjhadjhTdomadjh
2 dmadjop adjhTdomadjhadjhT:
3 1 2 syl TdomadjhadjhT:
4 simp2 Tdomadjhwxyzw
5 adjcl TdomadjhyadjhTy
6 hvmulcl xadjhTyxadjhTy
7 5 6 sylan2 xTdomadjhyxadjhTy
8 7 an12s TdomadjhxyxadjhTy
9 8 adantrr TdomadjhxyzxadjhTy
10 9 3adant2 TdomadjhwxyzxadjhTy
11 adjcl TdomadjhzadjhTz
12 11 adantrl TdomadjhxyzadjhTz
13 12 3adant2 TdomadjhwxyzadjhTz
14 his7 wxadjhTyadjhTzwihxadjhTy+adjhTz=wihxadjhTy+wihadjhTz
15 4 10 13 14 syl3anc TdomadjhwxyzwihxadjhTy+adjhTz=wihxadjhTy+wihadjhTz
16 adj2 TdomadjhwyTwihy=wihadjhTy
17 16 3adant3l TdomadjhwxyTwihy=wihadjhTy
18 17 oveq2d TdomadjhwxyxTwihy=xwihadjhTy
19 simp3l Tdomadjhwxyx
20 dmadjop TdomadjhT:
21 20 ffvelcdmda TdomadjhwTw
22 21 3adant3 TdomadjhwxyTw
23 simp3r Tdomadjhwxyy
24 his5 xTwyTwihxy=xTwihy
25 19 22 23 24 syl3anc TdomadjhwxyTwihxy=xTwihy
26 simp2 Tdomadjhwxyw
27 5 adantrl TdomadjhxyadjhTy
28 27 3adant2 TdomadjhwxyadjhTy
29 his5 xwadjhTywihxadjhTy=xwihadjhTy
30 19 26 28 29 syl3anc TdomadjhwxywihxadjhTy=xwihadjhTy
31 18 25 30 3eqtr4d TdomadjhwxyTwihxy=wihxadjhTy
32 31 3adant3r TdomadjhwxyzTwihxy=wihxadjhTy
33 adj2 TdomadjhwzTwihz=wihadjhTz
34 33 3adant3l TdomadjhwxyzTwihz=wihadjhTz
35 32 34 oveq12d TdomadjhwxyzTwihxy+Twihz=wihxadjhTy+wihadjhTz
36 21 3adant3 TdomadjhwxyzTw
37 hvmulcl xyxy
38 37 adantr xyzxy
39 38 3ad2ant3 Tdomadjhwxyzxy
40 simp3r Tdomadjhwxyzz
41 his7 TwxyzTwihxy+z=Twihxy+Twihz
42 36 39 40 41 syl3anc TdomadjhwxyzTwihxy+z=Twihxy+Twihz
43 hvaddcl xyzxy+z
44 37 43 sylan xyzxy+z
45 adj2 Tdomadjhwxy+zTwihxy+z=wihadjhTxy+z
46 44 45 syl3an3 TdomadjhwxyzTwihxy+z=wihadjhTxy+z
47 42 46 eqtr3d TdomadjhwxyzTwihxy+Twihz=wihadjhTxy+z
48 15 35 47 3eqtr2rd TdomadjhwxyzwihadjhTxy+z=wihxadjhTy+adjhTz
49 48 3com23 TdomadjhxyzwwihadjhTxy+z=wihxadjhTy+adjhTz
50 49 3expa TdomadjhxyzwwihadjhTxy+z=wihxadjhTy+adjhTz
51 50 ralrimiva TdomadjhxyzwwihadjhTxy+z=wihxadjhTy+adjhTz
52 adjcl Tdomadjhxy+zadjhTxy+z
53 44 52 sylan2 TdomadjhxyzadjhTxy+z
54 hvaddcl xadjhTyadjhTzxadjhTy+adjhTz
55 8 11 54 syl2an TdomadjhxyTdomadjhzxadjhTy+adjhTz
56 55 anandis TdomadjhxyzxadjhTy+adjhTz
57 hial2eq2 adjhTxy+zxadjhTy+adjhTzwwihadjhTxy+z=wihxadjhTy+adjhTzadjhTxy+z=xadjhTy+adjhTz
58 53 56 57 syl2anc TdomadjhxyzwwihadjhTxy+z=wihxadjhTy+adjhTzadjhTxy+z=xadjhTy+adjhTz
59 51 58 mpbid TdomadjhxyzadjhTxy+z=xadjhTy+adjhTz
60 59 exp32 TdomadjhxyzadjhTxy+z=xadjhTy+adjhTz
61 60 ralrimdv TdomadjhxyzadjhTxy+z=xadjhTy+adjhTz
62 61 ralrimivv TdomadjhxyzadjhTxy+z=xadjhTy+adjhTz
63 ellnop adjhTLinOpadjhT:xyzadjhTxy+z=xadjhTy+adjhTz
64 3 62 63 sylanbrc TdomadjhadjhTLinOp