Metamath Proof Explorer


Theorem aks4d1p1p3

Description: Bound of a ceiling of the binary logarithm to the fifth power. (Contributed by metakunt, 19-Aug-2024)

Ref Expression
Hypotheses aks4d1p1p3.1 φN
aks4d1p1p3.2 B=log2N5
aks4d1p1p3.3 φ3N
Assertion aks4d1p1p3 φNlog2B<Nlog2log2N5+1

Proof

Step Hyp Ref Expression
1 aks4d1p1p3.1 φN
2 aks4d1p1p3.2 B=log2N5
3 aks4d1p1p3.3 φ3N
4 2re 2
5 4 a1i φ2
6 2pos 0<2
7 6 a1i φ0<2
8 1 nnred φN
9 1 nngt0d φ0<N
10 1red φ1
11 1lt2 1<2
12 11 a1i φ1<2
13 10 12 ltned φ12
14 13 necomd φ21
15 5 7 8 9 14 relogbcld φlog2N
16 5nn0 50
17 16 a1i φ50
18 15 17 reexpcld φlog2N5
19 ceilcl log2N5log2N5
20 18 19 syl φlog2N5
21 20 zred φlog2N5
22 2 a1i φB=log2N5
23 22 eleq1d φBlog2N5
24 21 23 mpbird φB
25 0red φ0
26 7re 7
27 26 a1i φ7
28 7pos 0<7
29 28 a1i φ0<7
30 8 3 3lexlogpow5ineq3 φ7<log2N5
31 ceilge log2N5log2N5log2N5
32 18 31 syl φlog2N5log2N5
33 27 18 21 30 32 ltletrd φ7<log2N5
34 22 eqcomd φlog2N5=B
35 33 34 breqtrd φ7<B
36 25 27 24 29 35 lttrd φ0<B
37 5 7 24 36 14 relogbcld φlog2B
38 37 flcld φlog2B
39 38 zred φlog2B
40 18 10 readdcld φlog2N5+1
41 18 ltp1d φlog2N5<log2N5+1
42 27 18 40 30 41 lttrd φ7<log2N5+1
43 25 27 40 29 42 lttrd φ0<log2N5+1
44 5 7 40 43 14 relogbcld φlog2log2N5+1
45 flle log2Blog2Blog2B
46 37 45 syl φlog2Blog2B
47 ceilm1lt log2N5log2N51<log2N5
48 18 47 syl φlog2N51<log2N5
49 21 10 18 ltsubaddd φlog2N51<log2N5log2N5<log2N5+1
50 48 49 mpbid φlog2N5<log2N5+1
51 22 50 eqbrtrd φB<log2N5+1
52 2z 2
53 52 a1i φ2
54 53 uzidd φ22
55 24 36 elrpd φB+
56 40 43 elrpd φlog2N5+1+
57 logblt 22B+log2N5+1+B<log2N5+1log2B<log2log2N5+1
58 54 55 56 57 syl3anc φB<log2N5+1log2B<log2log2N5+1
59 51 58 mpbid φlog2B<log2log2N5+1
60 39 37 44 46 59 lelttrd φlog2B<log2log2N5+1
61 3re 3
62 61 a1i φ3
63 1lt3 1<3
64 63 a1i φ1<3
65 10 62 8 64 3 ltletrd φ1<N
66 8 65 39 44 cxpltd φlog2B<log2log2N5+1Nlog2B<Nlog2log2N5+1
67 60 66 mpbid φNlog2B<Nlog2log2N5+1