Metamath Proof Explorer


Theorem aks4d1p8d3

Description: The remainder of a division with its maximal prime power is coprime with that prime power. (Contributed by metakunt, 13-Nov-2024)

Ref Expression
Hypotheses aks4d1p8d3.1 φN
aks4d1p8d3.2 φP
aks4d1p8d3.3 φPN
Assertion aks4d1p8d3 φNPPpCntNgcdPPpCntN=1

Proof

Step Hyp Ref Expression
1 aks4d1p8d3.1 φN
2 aks4d1p8d3.2 φP
3 aks4d1p8d3.3 φPN
4 pcdvds PNPPpCntNN
5 2 1 4 syl2anc φPPpCntNN
6 prmnn PP
7 2 6 syl φP
8 7 nnzd φP
9 2 1 pccld φPpCntN0
10 8 9 zexpcld φPPpCntN
11 8 zcnd φP
12 0red φ0
13 1red φ1
14 8 zred φP
15 0lt1 0<1
16 15 a1i φ0<1
17 prmgt1 P1<P
18 2 17 syl φ1<P
19 12 13 14 16 18 lttrd φ0<P
20 12 19 ltned φ0P
21 20 necomd φP0
22 9 nn0zd φPpCntN
23 11 21 22 expne0d φPPpCntN0
24 1 nnzd φN
25 dvdsval2 PPpCntNPPpCntN0NPPpCntNNNPPpCntN
26 10 23 24 25 syl3anc φPPpCntNNNPPpCntN
27 5 26 mpbid φNPPpCntN
28 27 10 gcdcomd φNPPpCntNgcdPPpCntN=PPpCntNgcdNPPpCntN
29 pcndvds2 PN¬PNPPpCntN
30 2 1 29 syl2anc φ¬PNPPpCntN
31 coprm PNPPpCntN¬PNPPpCntNPgcdNPPpCntN=1
32 2 27 31 syl2anc φ¬PNPPpCntNPgcdNPPpCntN=1
33 30 32 mpbid φPgcdNPPpCntN=1
34 pcelnn PNPpCntNPN
35 2 1 34 syl2anc φPpCntNPN
36 3 35 mpbird φPpCntN
37 rpexp PNPPpCntNPpCntNPPpCntNgcdNPPpCntN=1PgcdNPPpCntN=1
38 8 27 36 37 syl3anc φPPpCntNgcdNPPpCntN=1PgcdNPPpCntN=1
39 33 38 mpbird φPPpCntNgcdNPPpCntN=1
40 28 39 eqtrd φNPPpCntNgcdPPpCntN=1