Description: The remainder of a division with its maximal prime power is coprime with that prime power. (Contributed by metakunt, 13-Nov-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | aks4d1p8d3.1 | |
|
aks4d1p8d3.2 | |
||
aks4d1p8d3.3 | |
||
Assertion | aks4d1p8d3 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | aks4d1p8d3.1 | |
|
2 | aks4d1p8d3.2 | |
|
3 | aks4d1p8d3.3 | |
|
4 | pcdvds | |
|
5 | 2 1 4 | syl2anc | |
6 | prmnn | |
|
7 | 2 6 | syl | |
8 | 7 | nnzd | |
9 | 2 1 | pccld | |
10 | 8 9 | zexpcld | |
11 | 8 | zcnd | |
12 | 0red | |
|
13 | 1red | |
|
14 | 8 | zred | |
15 | 0lt1 | |
|
16 | 15 | a1i | |
17 | prmgt1 | |
|
18 | 2 17 | syl | |
19 | 12 13 14 16 18 | lttrd | |
20 | 12 19 | ltned | |
21 | 20 | necomd | |
22 | 9 | nn0zd | |
23 | 11 21 22 | expne0d | |
24 | 1 | nnzd | |
25 | dvdsval2 | |
|
26 | 10 23 24 25 | syl3anc | |
27 | 5 26 | mpbid | |
28 | 27 10 | gcdcomd | |
29 | pcndvds2 | |
|
30 | 2 1 29 | syl2anc | |
31 | coprm | |
|
32 | 2 27 31 | syl2anc | |
33 | 30 32 | mpbid | |
34 | pcelnn | |
|
35 | 2 1 34 | syl2anc | |
36 | 3 35 | mpbird | |
37 | rpexp | |
|
38 | 8 27 36 37 | syl3anc | |
39 | 33 38 | mpbird | |
40 | 28 39 | eqtrd | |