Metamath Proof Explorer


Theorem alephadd

Description: The sum of two alephs is their maximum. Equation 6.1 of Jech p. 42. (Contributed by NM, 29-Sep-2004) (Revised by Mario Carneiro, 30-Apr-2015)

Ref Expression
Assertion alephadd A⊔︀BAB

Proof

Step Hyp Ref Expression
1 fvex AV
2 fvex BV
3 djuex AVBVA⊔︀BV
4 1 2 3 mp2an A⊔︀BV
5 alephfnon FnOn
6 5 fndmi dom=On
7 6 eleq2i AdomAOn
8 7 notbii ¬Adom¬AOn
9 6 eleq2i BdomBOn
10 9 notbii ¬Bdom¬BOn
11 df-dju ⊔︀=×1𝑜×
12 xpundir 1𝑜×=×1𝑜×
13 xp0 1𝑜×=
14 11 12 13 3eqtr2i ⊔︀=
15 ndmfv ¬AdomA=
16 ndmfv ¬BdomB=
17 djueq12 A=B=A⊔︀B=⊔︀
18 15 16 17 syl2an ¬Adom¬BdomA⊔︀B=⊔︀
19 15 adantr ¬Adom¬BdomA=
20 16 adantl ¬Adom¬BdomB=
21 19 20 uneq12d ¬Adom¬BdomAB=
22 un0 =
23 21 22 eqtrdi ¬Adom¬BdomAB=
24 14 18 23 3eqtr4a ¬Adom¬BdomA⊔︀B=AB
25 8 10 24 syl2anbr ¬AOn¬BOnA⊔︀B=AB
26 eqeng A⊔︀BVA⊔︀B=ABA⊔︀BAB
27 4 25 26 mpsyl ¬AOn¬BOnA⊔︀BAB
28 27 ex ¬AOn¬BOnA⊔︀BAB
29 alephgeom AOnωA
30 ssdomg AVωAωA
31 1 30 ax-mp ωAωA
32 alephon AOn
33 onenon AOnAdomcard
34 32 33 ax-mp Adomcard
35 alephon BOn
36 onenon BOnBdomcard
37 35 36 ax-mp Bdomcard
38 infdju AdomcardBdomcardωAA⊔︀BAB
39 34 37 38 mp3an12 ωAA⊔︀BAB
40 31 39 syl ωAA⊔︀BAB
41 29 40 sylbi AOnA⊔︀BAB
42 alephgeom BOnωB
43 ssdomg BVωBωB
44 2 43 ax-mp ωBωB
45 djucomen AVBVA⊔︀BB⊔︀A
46 1 2 45 mp2an A⊔︀BB⊔︀A
47 infdju BdomcardAdomcardωBB⊔︀ABA
48 37 34 47 mp3an12 ωBB⊔︀ABA
49 entr A⊔︀BB⊔︀AB⊔︀ABAA⊔︀BBA
50 46 48 49 sylancr ωBA⊔︀BBA
51 uncom BA=AB
52 50 51 breqtrdi ωBA⊔︀BAB
53 44 52 syl ωBA⊔︀BAB
54 42 53 sylbi BOnA⊔︀BAB
55 28 41 54 pm2.61ii A⊔︀BAB