Description: The sum of two alephs is their maximum. Equation 6.1 of Jech p. 42. (Contributed by NM, 29-Sep-2004) (Revised by Mario Carneiro, 30-Apr-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | alephadd | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvex | |
|
2 | fvex | |
|
3 | djuex | |
|
4 | 1 2 3 | mp2an | |
5 | alephfnon | |
|
6 | 5 | fndmi | |
7 | 6 | eleq2i | |
8 | 7 | notbii | |
9 | 6 | eleq2i | |
10 | 9 | notbii | |
11 | df-dju | |
|
12 | xpundir | |
|
13 | xp0 | |
|
14 | 11 12 13 | 3eqtr2i | |
15 | ndmfv | |
|
16 | ndmfv | |
|
17 | djueq12 | |
|
18 | 15 16 17 | syl2an | |
19 | 15 | adantr | |
20 | 16 | adantl | |
21 | 19 20 | uneq12d | |
22 | un0 | |
|
23 | 21 22 | eqtrdi | |
24 | 14 18 23 | 3eqtr4a | |
25 | 8 10 24 | syl2anbr | |
26 | eqeng | |
|
27 | 4 25 26 | mpsyl | |
28 | 27 | ex | |
29 | alephgeom | |
|
30 | ssdomg | |
|
31 | 1 30 | ax-mp | |
32 | alephon | |
|
33 | onenon | |
|
34 | 32 33 | ax-mp | |
35 | alephon | |
|
36 | onenon | |
|
37 | 35 36 | ax-mp | |
38 | infdju | |
|
39 | 34 37 38 | mp3an12 | |
40 | 31 39 | syl | |
41 | 29 40 | sylbi | |
42 | alephgeom | |
|
43 | ssdomg | |
|
44 | 2 43 | ax-mp | |
45 | djucomen | |
|
46 | 1 2 45 | mp2an | |
47 | infdju | |
|
48 | 37 34 47 | mp3an12 | |
49 | entr | |
|
50 | 46 48 49 | sylancr | |
51 | uncom | |
|
52 | 50 51 | breqtrdi | |
53 | 44 52 | syl | |
54 | 42 53 | sylbi | |
55 | 28 41 54 | pm2.61ii | |