| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fvex |
|
| 2 |
|
fvex |
|
| 3 |
|
djuex |
|
| 4 |
1 2 3
|
mp2an |
|
| 5 |
|
alephfnon |
|
| 6 |
5
|
fndmi |
|
| 7 |
6
|
eleq2i |
|
| 8 |
7
|
notbii |
|
| 9 |
6
|
eleq2i |
|
| 10 |
9
|
notbii |
|
| 11 |
|
df-dju |
|
| 12 |
|
xpundir |
|
| 13 |
|
xp0 |
|
| 14 |
11 12 13
|
3eqtr2i |
|
| 15 |
|
ndmfv |
|
| 16 |
|
ndmfv |
|
| 17 |
|
djueq12 |
|
| 18 |
15 16 17
|
syl2an |
|
| 19 |
15
|
adantr |
|
| 20 |
16
|
adantl |
|
| 21 |
19 20
|
uneq12d |
|
| 22 |
|
un0 |
|
| 23 |
21 22
|
eqtrdi |
|
| 24 |
14 18 23
|
3eqtr4a |
|
| 25 |
8 10 24
|
syl2anbr |
|
| 26 |
|
eqeng |
|
| 27 |
4 25 26
|
mpsyl |
|
| 28 |
27
|
ex |
|
| 29 |
|
alephgeom |
|
| 30 |
|
ssdomg |
|
| 31 |
1 30
|
ax-mp |
|
| 32 |
|
alephon |
|
| 33 |
|
onenon |
|
| 34 |
32 33
|
ax-mp |
|
| 35 |
|
alephon |
|
| 36 |
|
onenon |
|
| 37 |
35 36
|
ax-mp |
|
| 38 |
|
infdju |
|
| 39 |
34 37 38
|
mp3an12 |
|
| 40 |
31 39
|
syl |
|
| 41 |
29 40
|
sylbi |
|
| 42 |
|
alephgeom |
|
| 43 |
|
ssdomg |
|
| 44 |
2 43
|
ax-mp |
|
| 45 |
|
djucomen |
|
| 46 |
1 2 45
|
mp2an |
|
| 47 |
|
infdju |
|
| 48 |
37 34 47
|
mp3an12 |
|
| 49 |
|
entr |
|
| 50 |
46 48 49
|
sylancr |
|
| 51 |
|
uncom |
|
| 52 |
50 51
|
breqtrdi |
|
| 53 |
44 52
|
syl |
|
| 54 |
42 53
|
sylbi |
|
| 55 |
28 41 54
|
pm2.61ii |
|