Metamath Proof Explorer


Theorem algcvgblem

Description: Lemma for algcvgb . (Contributed by Paul Chapman, 31-Mar-2011)

Ref Expression
Assertion algcvgblem M 0 N 0 N 0 N < M M 0 N < M M = 0 N = 0

Proof

Step Hyp Ref Expression
1 imor N 0 N < M ¬ N 0 N < M
2 0re 0
3 nn0re M 0 M
4 3 adantr M 0 N 0 M
5 ltnle 0 M 0 < M ¬ M 0
6 2 4 5 sylancr M 0 N 0 0 < M ¬ M 0
7 nn0le0eq0 M 0 M 0 M = 0
8 7 notbid M 0 ¬ M 0 ¬ M = 0
9 8 adantr M 0 N 0 ¬ M 0 ¬ M = 0
10 6 9 bitrd M 0 N 0 0 < M ¬ M = 0
11 df-ne M 0 ¬ M = 0
12 10 11 bitr4di M 0 N 0 0 < M M 0
13 12 anbi2d M 0 N 0 ¬ N 0 0 < M ¬ N 0 M 0
14 nne ¬ N 0 N = 0
15 breq1 N = 0 N < M 0 < M
16 14 15 sylbi ¬ N 0 N < M 0 < M
17 16 biimpar ¬ N 0 0 < M N < M
18 13 17 syl6bir M 0 N 0 ¬ N 0 M 0 N < M
19 18 expd M 0 N 0 ¬ N 0 M 0 N < M
20 ax-1 N < M M 0 N < M
21 jaob ¬ N 0 N < M M 0 N < M ¬ N 0 M 0 N < M N < M M 0 N < M
22 19 20 21 sylanblrc M 0 N 0 ¬ N 0 N < M M 0 N < M
23 1 22 syl5bi M 0 N 0 N 0 N < M M 0 N < M
24 nn0ge0 N 0 0 N
25 24 adantl M 0 N 0 0 N
26 nn0re N 0 N
27 lelttr 0 N M 0 N N < M 0 < M
28 2 27 mp3an1 N M 0 N N < M 0 < M
29 26 3 28 syl2anr M 0 N 0 0 N N < M 0 < M
30 25 29 mpand M 0 N 0 N < M 0 < M
31 30 12 sylibd M 0 N 0 N < M M 0
32 31 imim2d M 0 N 0 N 0 N < M N 0 M 0
33 23 32 jcad M 0 N 0 N 0 N < M M 0 N < M N 0 M 0
34 pm3.34 M 0 N < M N 0 M 0 N 0 N < M
35 33 34 impbid1 M 0 N 0 N 0 N < M M 0 N < M N 0 M 0
36 con34b M = 0 N = 0 ¬ N = 0 ¬ M = 0
37 df-ne N 0 ¬ N = 0
38 37 11 imbi12i N 0 M 0 ¬ N = 0 ¬ M = 0
39 36 38 bitr4i M = 0 N = 0 N 0 M 0
40 39 anbi2i M 0 N < M M = 0 N = 0 M 0 N < M N 0 M 0
41 35 40 bitr4di M 0 N 0 N 0 N < M M 0 N < M M = 0 N = 0