Metamath Proof Explorer


Theorem algcvgblem

Description: Lemma for algcvgb . (Contributed by Paul Chapman, 31-Mar-2011)

Ref Expression
Assertion algcvgblem M0N0N0N<MM0N<MM=0N=0

Proof

Step Hyp Ref Expression
1 imor N0N<M¬N0N<M
2 0re 0
3 nn0re M0M
4 3 adantr M0N0M
5 ltnle 0M0<M¬M0
6 2 4 5 sylancr M0N00<M¬M0
7 nn0le0eq0 M0M0M=0
8 7 notbid M0¬M0¬M=0
9 8 adantr M0N0¬M0¬M=0
10 6 9 bitrd M0N00<M¬M=0
11 df-ne M0¬M=0
12 10 11 bitr4di M0N00<MM0
13 12 anbi2d M0N0¬N00<M¬N0M0
14 nne ¬N0N=0
15 breq1 N=0N<M0<M
16 14 15 sylbi ¬N0N<M0<M
17 16 biimpar ¬N00<MN<M
18 13 17 syl6bir M0N0¬N0M0N<M
19 18 expd M0N0¬N0M0N<M
20 ax-1 N<MM0N<M
21 jaob ¬N0N<MM0N<M¬N0M0N<MN<MM0N<M
22 19 20 21 sylanblrc M0N0¬N0N<MM0N<M
23 1 22 biimtrid M0N0N0N<MM0N<M
24 nn0ge0 N00N
25 24 adantl M0N00N
26 nn0re N0N
27 lelttr 0NM0NN<M0<M
28 2 27 mp3an1 NM0NN<M0<M
29 26 3 28 syl2anr M0N00NN<M0<M
30 25 29 mpand M0N0N<M0<M
31 30 12 sylibd M0N0N<MM0
32 31 imim2d M0N0N0N<MN0M0
33 23 32 jcad M0N0N0N<MM0N<MN0M0
34 pm3.34 M0N<MN0M0N0N<M
35 33 34 impbid1 M0N0N0N<MM0N<MN0M0
36 con34b M=0N=0¬N=0¬M=0
37 df-ne N0¬N=0
38 37 11 imbi12i N0M0¬N=0¬M=0
39 36 38 bitr4i M=0N=0N0M0
40 39 anbi2i M0N<MM=0N=0M0N<MN0M0
41 35 40 bitr4di M0N0N0N<MM0N<MM=0N=0