Step |
Hyp |
Ref |
Expression |
1 |
|
archiabllem.b |
|
2 |
|
archiabllem.0 |
|
3 |
|
archiabllem.e |
|
4 |
|
archiabllem.t |
|
5 |
|
archiabllem.m |
|
6 |
|
archiabllem.g |
|
7 |
|
archiabllem.a |
|
8 |
|
archiabllem1.u |
|
9 |
|
archiabllem1.p |
|
10 |
|
archiabllem1.s |
|
11 |
|
ogrpgrp |
|
12 |
6 11
|
syl |
|
13 |
|
simplr |
|
14 |
13
|
zcnd |
|
15 |
|
simpr |
|
16 |
15
|
zcnd |
|
17 |
14 16
|
addcomd |
|
18 |
17
|
oveq1d |
|
19 |
12
|
ad2antrr |
|
20 |
8
|
ad2antrr |
|
21 |
|
eqid |
|
22 |
1 5 21
|
mulgdir |
|
23 |
19 13 15 20 22
|
syl13anc |
|
24 |
1 5 21
|
mulgdir |
|
25 |
19 15 13 20 24
|
syl13anc |
|
26 |
18 23 25
|
3eqtr3d |
|
27 |
26
|
adantllr |
|
28 |
27
|
adantlr |
|
29 |
28
|
adantr |
|
30 |
|
simpllr |
|
31 |
|
simpr |
|
32 |
30 31
|
oveq12d |
|
33 |
31 30
|
oveq12d |
|
34 |
29 32 33
|
3eqtr4d |
|
35 |
|
simplll |
|
36 |
|
simpr1r |
|
37 |
36
|
3anassrs |
|
38 |
1 2 3 4 5 6 7 8 9 10
|
archiabllem1b |
|
39 |
35 37 38
|
syl2anc |
|
40 |
34 39
|
r19.29a |
|
41 |
1 2 3 4 5 6 7 8 9 10
|
archiabllem1b |
|
42 |
41
|
adantrr |
|
43 |
40 42
|
r19.29a |
|
44 |
43
|
ralrimivva |
|
45 |
1 21
|
isabl2 |
|
46 |
12 44 45
|
sylanbrc |
|