Metamath Proof Explorer


Theorem archiabllem1

Description: Archimedean ordered groups with a minimal positive value are abelian. (Contributed by Thierry Arnoux, 13-Apr-2018)

Ref Expression
Hypotheses archiabllem.b B=BaseW
archiabllem.0 0˙=0W
archiabllem.e ˙=W
archiabllem.t <˙=<W
archiabllem.m ·˙=W
archiabllem.g φWoGrp
archiabllem.a φWArchi
archiabllem1.u φUB
archiabllem1.p φ0˙<˙U
archiabllem1.s φxB0˙<˙xU˙x
Assertion archiabllem1 φWAbel

Proof

Step Hyp Ref Expression
1 archiabllem.b B=BaseW
2 archiabllem.0 0˙=0W
3 archiabllem.e ˙=W
4 archiabllem.t <˙=<W
5 archiabllem.m ·˙=W
6 archiabllem.g φWoGrp
7 archiabllem.a φWArchi
8 archiabllem1.u φUB
9 archiabllem1.p φ0˙<˙U
10 archiabllem1.s φxB0˙<˙xU˙x
11 ogrpgrp WoGrpWGrp
12 6 11 syl φWGrp
13 simplr φmnm
14 13 zcnd φmnm
15 simpr φmnn
16 15 zcnd φmnn
17 14 16 addcomd φmnm+n=n+m
18 17 oveq1d φmnm+n·˙U=n+m·˙U
19 12 ad2antrr φmnWGrp
20 8 ad2antrr φmnUB
21 eqid +W=+W
22 1 5 21 mulgdir WGrpmnUBm+n·˙U=m·˙U+Wn·˙U
23 19 13 15 20 22 syl13anc φmnm+n·˙U=m·˙U+Wn·˙U
24 1 5 21 mulgdir WGrpnmUBn+m·˙U=n·˙U+Wm·˙U
25 19 15 13 20 24 syl13anc φmnn+m·˙U=n·˙U+Wm·˙U
26 18 23 25 3eqtr3d φmnm·˙U+Wn·˙U=n·˙U+Wm·˙U
27 26 adantllr φyBzBmnm·˙U+Wn·˙U=n·˙U+Wm·˙U
28 27 adantlr φyBzBmy=m·˙Unm·˙U+Wn·˙U=n·˙U+Wm·˙U
29 28 adantr φyBzBmy=m·˙Unz=n·˙Um·˙U+Wn·˙U=n·˙U+Wm·˙U
30 simpllr φyBzBmy=m·˙Unz=n·˙Uy=m·˙U
31 simpr φyBzBmy=m·˙Unz=n·˙Uz=n·˙U
32 30 31 oveq12d φyBzBmy=m·˙Unz=n·˙Uy+Wz=m·˙U+Wn·˙U
33 31 30 oveq12d φyBzBmy=m·˙Unz=n·˙Uz+Wy=n·˙U+Wm·˙U
34 29 32 33 3eqtr4d φyBzBmy=m·˙Unz=n·˙Uy+Wz=z+Wy
35 simplll φyBzBmy=m·˙Uφ
36 simpr1r φyBzBmy=m·˙UzB
37 36 3anassrs φyBzBmy=m·˙UzB
38 1 2 3 4 5 6 7 8 9 10 archiabllem1b φzBnz=n·˙U
39 35 37 38 syl2anc φyBzBmy=m·˙Unz=n·˙U
40 34 39 r19.29a φyBzBmy=m·˙Uy+Wz=z+Wy
41 1 2 3 4 5 6 7 8 9 10 archiabllem1b φyBmy=m·˙U
42 41 adantrr φyBzBmy=m·˙U
43 40 42 r19.29a φyBzBy+Wz=z+Wy
44 43 ralrimivva φyBzBy+Wz=z+Wy
45 1 21 isabl2 WAbelWGrpyBzBy+Wz=z+Wy
46 12 44 45 sylanbrc φWAbel