Description: Archimedean ordered groups with a minimal positive value are abelian. (Contributed by Thierry Arnoux, 13-Apr-2018)
Ref | Expression | ||
---|---|---|---|
Hypotheses | archiabllem.b | |
|
archiabllem.0 | |
||
archiabllem.e | |
||
archiabllem.t | |
||
archiabllem.m | |
||
archiabllem.g | |
||
archiabllem.a | |
||
archiabllem1.u | |
||
archiabllem1.p | |
||
archiabllem1.s | |
||
Assertion | archiabllem1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | archiabllem.b | |
|
2 | archiabllem.0 | |
|
3 | archiabllem.e | |
|
4 | archiabllem.t | |
|
5 | archiabllem.m | |
|
6 | archiabllem.g | |
|
7 | archiabllem.a | |
|
8 | archiabllem1.u | |
|
9 | archiabllem1.p | |
|
10 | archiabllem1.s | |
|
11 | ogrpgrp | |
|
12 | 6 11 | syl | |
13 | simplr | |
|
14 | 13 | zcnd | |
15 | simpr | |
|
16 | 15 | zcnd | |
17 | 14 16 | addcomd | |
18 | 17 | oveq1d | |
19 | 12 | ad2antrr | |
20 | 8 | ad2antrr | |
21 | eqid | |
|
22 | 1 5 21 | mulgdir | |
23 | 19 13 15 20 22 | syl13anc | |
24 | 1 5 21 | mulgdir | |
25 | 19 15 13 20 24 | syl13anc | |
26 | 18 23 25 | 3eqtr3d | |
27 | 26 | adantllr | |
28 | 27 | adantlr | |
29 | 28 | adantr | |
30 | simpllr | |
|
31 | simpr | |
|
32 | 30 31 | oveq12d | |
33 | 31 30 | oveq12d | |
34 | 29 32 33 | 3eqtr4d | |
35 | simplll | |
|
36 | simpr1r | |
|
37 | 36 | 3anassrs | |
38 | 1 2 3 4 5 6 7 8 9 10 | archiabllem1b | |
39 | 35 37 38 | syl2anc | |
40 | 34 39 | r19.29a | |
41 | 1 2 3 4 5 6 7 8 9 10 | archiabllem1b | |
42 | 41 | adantrr | |
43 | 40 42 | r19.29a | |
44 | 43 | ralrimivva | |
45 | 1 21 | isabl2 | |
46 | 12 44 45 | sylanbrc | |