| Step | Hyp | Ref | Expression | 
						
							| 1 |  | archiabllem.b |  | 
						
							| 2 |  | archiabllem.0 |  | 
						
							| 3 |  | archiabllem.e |  | 
						
							| 4 |  | archiabllem.t |  | 
						
							| 5 |  | archiabllem.m |  | 
						
							| 6 |  | archiabllem.g |  | 
						
							| 7 |  | archiabllem.a |  | 
						
							| 8 |  | archiabllem1.u |  | 
						
							| 9 |  | archiabllem1.p |  | 
						
							| 10 |  | archiabllem1.s |  | 
						
							| 11 |  | ogrpgrp |  | 
						
							| 12 | 6 11 | syl |  | 
						
							| 13 |  | simplr |  | 
						
							| 14 | 13 | zcnd |  | 
						
							| 15 |  | simpr |  | 
						
							| 16 | 15 | zcnd |  | 
						
							| 17 | 14 16 | addcomd |  | 
						
							| 18 | 17 | oveq1d |  | 
						
							| 19 | 12 | ad2antrr |  | 
						
							| 20 | 8 | ad2antrr |  | 
						
							| 21 |  | eqid |  | 
						
							| 22 | 1 5 21 | mulgdir |  | 
						
							| 23 | 19 13 15 20 22 | syl13anc |  | 
						
							| 24 | 1 5 21 | mulgdir |  | 
						
							| 25 | 19 15 13 20 24 | syl13anc |  | 
						
							| 26 | 18 23 25 | 3eqtr3d |  | 
						
							| 27 | 26 | adantllr |  | 
						
							| 28 | 27 | adantlr |  | 
						
							| 29 | 28 | adantr |  | 
						
							| 30 |  | simpllr |  | 
						
							| 31 |  | simpr |  | 
						
							| 32 | 30 31 | oveq12d |  | 
						
							| 33 | 31 30 | oveq12d |  | 
						
							| 34 | 29 32 33 | 3eqtr4d |  | 
						
							| 35 |  | simplll |  | 
						
							| 36 |  | simpr1r |  | 
						
							| 37 | 36 | 3anassrs |  | 
						
							| 38 | 1 2 3 4 5 6 7 8 9 10 | archiabllem1b |  | 
						
							| 39 | 35 37 38 | syl2anc |  | 
						
							| 40 | 34 39 | r19.29a |  | 
						
							| 41 | 1 2 3 4 5 6 7 8 9 10 | archiabllem1b |  | 
						
							| 42 | 41 | adantrr |  | 
						
							| 43 | 40 42 | r19.29a |  | 
						
							| 44 | 43 | ralrimivva |  | 
						
							| 45 | 1 21 | isabl2 |  | 
						
							| 46 | 12 44 45 | sylanbrc |  |