Metamath Proof Explorer


Theorem argimlt0

Description: Closure of the argument of a complex number with negative imaginary part. (Contributed by Mario Carneiro, 25-Feb-2015)

Ref Expression
Assertion argimlt0 AA<0logAπ0

Proof

Step Hyp Ref Expression
1 simpr AA<0A<0
2 1 lt0ne0d AA<0A0
3 fveq2 A=0A=0
4 im0 0=0
5 3 4 eqtrdi A=0A=0
6 5 necon3i A0A0
7 2 6 syl AA<0A0
8 logcl AA0logA
9 7 8 syldan AA<0logA
10 9 imcld AA<0logA
11 logcj AA0logA=logA
12 2 11 syldan AA<0logA=logA
13 12 fveq2d AA<0logA=logA
14 9 imcjd AA<0logA=logA
15 13 14 eqtrd AA<0logA=logA
16 cjcl AA
17 imcl AA
18 17 adantr AA<0A
19 18 lt0neg1d AA<0A<00<A
20 1 19 mpbid AA<00<A
21 imcj AA=A
22 21 adantr AA<0A=A
23 20 22 breqtrrd AA<00<A
24 argimgt0 A0<AlogA0π
25 16 23 24 syl2an2r AA<0logA0π
26 eliooord logA0π0<logAlogA<π
27 25 26 syl AA<00<logAlogA<π
28 27 simprd AA<0logA<π
29 15 28 eqbrtrrd AA<0logA<π
30 pire π
31 ltnegcon1 logAπlogA<ππ<logA
32 10 30 31 sylancl AA<0logA<ππ<logA
33 29 32 mpbid AA<0π<logA
34 27 simpld AA<00<logA
35 34 15 breqtrd AA<00<logA
36 10 lt0neg1d AA<0logA<00<logA
37 35 36 mpbird AA<0logA<0
38 30 renegcli π
39 38 rexri π*
40 0xr 0*
41 elioo2 π*0*logAπ0logAπ<logAlogA<0
42 39 40 41 mp2an logAπ0logAπ<logAlogA<0
43 10 33 37 42 syl3anbrc AA<0logAπ0