Description: Closure of the argument of a complex number with negative imaginary part. (Contributed by Mario Carneiro, 25-Feb-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | argimlt0 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr | |
|
2 | 1 | lt0ne0d | |
3 | fveq2 | |
|
4 | im0 | |
|
5 | 3 4 | eqtrdi | |
6 | 5 | necon3i | |
7 | 2 6 | syl | |
8 | logcl | |
|
9 | 7 8 | syldan | |
10 | 9 | imcld | |
11 | logcj | |
|
12 | 2 11 | syldan | |
13 | 12 | fveq2d | |
14 | 9 | imcjd | |
15 | 13 14 | eqtrd | |
16 | cjcl | |
|
17 | imcl | |
|
18 | 17 | adantr | |
19 | 18 | lt0neg1d | |
20 | 1 19 | mpbid | |
21 | imcj | |
|
22 | 21 | adantr | |
23 | 20 22 | breqtrrd | |
24 | argimgt0 | |
|
25 | 16 23 24 | syl2an2r | |
26 | eliooord | |
|
27 | 25 26 | syl | |
28 | 27 | simprd | |
29 | 15 28 | eqbrtrrd | |
30 | pire | |
|
31 | ltnegcon1 | |
|
32 | 10 30 31 | sylancl | |
33 | 29 32 | mpbid | |
34 | 27 | simpld | |
35 | 34 15 | breqtrd | |
36 | 10 | lt0neg1d | |
37 | 35 36 | mpbird | |
38 | 30 | renegcli | |
39 | 38 | rexri | |
40 | 0xr | |
|
41 | elioo2 | |
|
42 | 39 40 41 | mp2an | |
43 | 10 33 37 42 | syl3anbrc | |