Metamath Proof Explorer


Theorem argimlt0

Description: Closure of the argument of a complex number with negative imaginary part. (Contributed by Mario Carneiro, 25-Feb-2015)

Ref Expression
Assertion argimlt0 A A < 0 log A π 0

Proof

Step Hyp Ref Expression
1 simpr A A < 0 A < 0
2 1 lt0ne0d A A < 0 A 0
3 fveq2 A = 0 A = 0
4 im0 0 = 0
5 3 4 eqtrdi A = 0 A = 0
6 5 necon3i A 0 A 0
7 2 6 syl A A < 0 A 0
8 logcl A A 0 log A
9 7 8 syldan A A < 0 log A
10 9 imcld A A < 0 log A
11 logcj A A 0 log A = log A
12 2 11 syldan A A < 0 log A = log A
13 12 fveq2d A A < 0 log A = log A
14 9 imcjd A A < 0 log A = log A
15 13 14 eqtrd A A < 0 log A = log A
16 cjcl A A
17 imcl A A
18 17 adantr A A < 0 A
19 18 lt0neg1d A A < 0 A < 0 0 < A
20 1 19 mpbid A A < 0 0 < A
21 imcj A A = A
22 21 adantr A A < 0 A = A
23 20 22 breqtrrd A A < 0 0 < A
24 argimgt0 A 0 < A log A 0 π
25 16 23 24 syl2an2r A A < 0 log A 0 π
26 eliooord log A 0 π 0 < log A log A < π
27 25 26 syl A A < 0 0 < log A log A < π
28 27 simprd A A < 0 log A < π
29 15 28 eqbrtrrd A A < 0 log A < π
30 pire π
31 ltnegcon1 log A π log A < π π < log A
32 10 30 31 sylancl A A < 0 log A < π π < log A
33 29 32 mpbid A A < 0 π < log A
34 27 simpld A A < 0 0 < log A
35 34 15 breqtrd A A < 0 0 < log A
36 10 lt0neg1d A A < 0 log A < 0 0 < log A
37 35 36 mpbird A A < 0 log A < 0
38 30 renegcli π
39 38 rexri π *
40 0xr 0 *
41 elioo2 π * 0 * log A π 0 log A π < log A log A < 0
42 39 40 41 mp2an log A π 0 log A π < log A log A < 0
43 10 33 37 42 syl3anbrc A A < 0 log A π 0