| Step |
Hyp |
Ref |
Expression |
| 1 |
|
asclf.a |
|
| 2 |
|
asclf.f |
|
| 3 |
|
asclf.r |
|
| 4 |
|
asclf.l |
|
| 5 |
|
eqid |
|
| 6 |
|
eqid |
|
| 7 |
|
eqid |
|
| 8 |
|
eqid |
|
| 9 |
2
|
lmodring |
|
| 10 |
4 9
|
syl |
|
| 11 |
|
ringgrp |
|
| 12 |
10 11
|
syl |
|
| 13 |
|
ringgrp |
|
| 14 |
3 13
|
syl |
|
| 15 |
1 2 3 4 5 6
|
asclf |
|
| 16 |
4
|
adantr |
|
| 17 |
|
simprl |
|
| 18 |
|
simprr |
|
| 19 |
|
eqid |
|
| 20 |
6 19
|
ringidcl |
|
| 21 |
3 20
|
syl |
|
| 22 |
21
|
adantr |
|
| 23 |
|
eqid |
|
| 24 |
6 8 2 23 5 7
|
lmodvsdir |
|
| 25 |
16 17 18 22 24
|
syl13anc |
|
| 26 |
5 7
|
grpcl |
|
| 27 |
26
|
3expb |
|
| 28 |
12 27
|
sylan |
|
| 29 |
1 2 5 23 19
|
asclval |
|
| 30 |
28 29
|
syl |
|
| 31 |
1 2 5 23 19
|
asclval |
|
| 32 |
1 2 5 23 19
|
asclval |
|
| 33 |
31 32
|
oveqan12d |
|
| 34 |
33
|
adantl |
|
| 35 |
25 30 34
|
3eqtr4d |
|
| 36 |
5 6 7 8 12 14 15 35
|
isghmd |
|