Metamath Proof Explorer


Theorem asclghm

Description: The algebra scalars function is a group homomorphism. (Contributed by Mario Carneiro, 4-Jul-2015)

Ref Expression
Hypotheses asclf.a A=algScW
asclf.f F=ScalarW
asclf.r φWRing
asclf.l φWLMod
Assertion asclghm φAFGrpHomW

Proof

Step Hyp Ref Expression
1 asclf.a A=algScW
2 asclf.f F=ScalarW
3 asclf.r φWRing
4 asclf.l φWLMod
5 eqid BaseF=BaseF
6 eqid BaseW=BaseW
7 eqid +F=+F
8 eqid +W=+W
9 2 lmodring WLModFRing
10 4 9 syl φFRing
11 ringgrp FRingFGrp
12 10 11 syl φFGrp
13 ringgrp WRingWGrp
14 3 13 syl φWGrp
15 1 2 3 4 5 6 asclf φA:BaseFBaseW
16 4 adantr φxBaseFyBaseFWLMod
17 simprl φxBaseFyBaseFxBaseF
18 simprr φxBaseFyBaseFyBaseF
19 eqid 1W=1W
20 6 19 ringidcl WRing1WBaseW
21 3 20 syl φ1WBaseW
22 21 adantr φxBaseFyBaseF1WBaseW
23 eqid W=W
24 6 8 2 23 5 7 lmodvsdir WLModxBaseFyBaseF1WBaseWx+FyW1W=xW1W+WyW1W
25 16 17 18 22 24 syl13anc φxBaseFyBaseFx+FyW1W=xW1W+WyW1W
26 5 7 grpcl FGrpxBaseFyBaseFx+FyBaseF
27 26 3expb FGrpxBaseFyBaseFx+FyBaseF
28 12 27 sylan φxBaseFyBaseFx+FyBaseF
29 1 2 5 23 19 asclval x+FyBaseFAx+Fy=x+FyW1W
30 28 29 syl φxBaseFyBaseFAx+Fy=x+FyW1W
31 1 2 5 23 19 asclval xBaseFAx=xW1W
32 1 2 5 23 19 asclval yBaseFAy=yW1W
33 31 32 oveqan12d xBaseFyBaseFAx+WAy=xW1W+WyW1W
34 33 adantl φxBaseFyBaseFAx+WAy=xW1W+WyW1W
35 25 30 34 3eqtr4d φxBaseFyBaseFAx+Fy=Ax+WAy
36 5 6 7 8 12 14 15 35 isghmd φAFGrpHomW