Description: The algebra scalars function is a group homomorphism. (Contributed by Mario Carneiro, 4-Jul-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | asclf.a | |
|
asclf.f | |
||
asclf.r | |
||
asclf.l | |
||
Assertion | asclghm | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | asclf.a | |
|
2 | asclf.f | |
|
3 | asclf.r | |
|
4 | asclf.l | |
|
5 | eqid | |
|
6 | eqid | |
|
7 | eqid | |
|
8 | eqid | |
|
9 | 2 | lmodring | |
10 | 4 9 | syl | |
11 | ringgrp | |
|
12 | 10 11 | syl | |
13 | ringgrp | |
|
14 | 3 13 | syl | |
15 | 1 2 3 4 5 6 | asclf | |
16 | 4 | adantr | |
17 | simprl | |
|
18 | simprr | |
|
19 | eqid | |
|
20 | 6 19 | ringidcl | |
21 | 3 20 | syl | |
22 | 21 | adantr | |
23 | eqid | |
|
24 | 6 8 2 23 5 7 | lmodvsdir | |
25 | 16 17 18 22 24 | syl13anc | |
26 | 5 7 | grpcl | |
27 | 26 | 3expb | |
28 | 12 27 | sylan | |
29 | 1 2 5 23 19 | asclval | |
30 | 28 29 | syl | |
31 | 1 2 5 23 19 | asclval | |
32 | 1 2 5 23 19 | asclval | |
33 | 31 32 | oveqan12d | |
34 | 33 | adantl | |
35 | 25 30 34 | 3eqtr4d | |
36 | 5 6 7 8 12 14 15 35 | isghmd | |