Metamath Proof Explorer


Theorem assamulgscmlem1

Description: Lemma 1 for assamulgscm (induction base). (Contributed by AV, 26-Aug-2019)

Ref Expression
Hypotheses assamulgscm.v V=BaseW
assamulgscm.f F=ScalarW
assamulgscm.b B=BaseF
assamulgscm.s ·˙=W
assamulgscm.g G=mulGrpF
assamulgscm.p ×˙=G
assamulgscm.h H=mulGrpW
assamulgscm.e E=H
Assertion assamulgscmlem1 ABXVWAssAlg0EA·˙X=0×˙A·˙0EX

Proof

Step Hyp Ref Expression
1 assamulgscm.v V=BaseW
2 assamulgscm.f F=ScalarW
3 assamulgscm.b B=BaseF
4 assamulgscm.s ·˙=W
5 assamulgscm.g G=mulGrpF
6 assamulgscm.p ×˙=G
7 assamulgscm.h H=mulGrpW
8 assamulgscm.e E=H
9 assalmod WAssAlgWLMod
10 assaring WAssAlgWRing
11 eqid 1W=1W
12 1 11 ringidcl WRing1WV
13 10 12 syl WAssAlg1WV
14 eqid 1F=1F
15 1 2 4 14 lmodvs1 WLMod1WV1F·˙1W=1W
16 15 eqcomd WLMod1WV1W=1F·˙1W
17 9 13 16 syl2anc WAssAlg1W=1F·˙1W
18 17 adantl ABXVWAssAlg1W=1F·˙1W
19 9 adantl ABXVWAssAlgWLMod
20 simpll ABXVWAssAlgAB
21 simplr ABXVWAssAlgXV
22 1 2 4 3 lmodvscl WLModABXVA·˙XV
23 19 20 21 22 syl3anc ABXVWAssAlgA·˙XV
24 7 1 mgpbas V=BaseH
25 7 11 ringidval 1W=0H
26 24 25 8 mulg0 A·˙XV0EA·˙X=1W
27 23 26 syl ABXVWAssAlg0EA·˙X=1W
28 5 3 mgpbas B=BaseG
29 5 14 ringidval 1F=0G
30 28 29 6 mulg0 AB0×˙A=1F
31 20 30 syl ABXVWAssAlg0×˙A=1F
32 24 25 8 mulg0 XV0EX=1W
33 21 32 syl ABXVWAssAlg0EX=1W
34 31 33 oveq12d ABXVWAssAlg0×˙A·˙0EX=1F·˙1W
35 18 27 34 3eqtr4d ABXVWAssAlg0EA·˙X=0×˙A·˙0EX