Metamath Proof Explorer


Theorem atantayl3

Description: The Taylor series for arctan ( A ) . (Contributed by Mario Carneiro, 7-Apr-2015)

Ref Expression
Hypothesis atantayl3.1 F = n 0 1 n A 2 n + 1 2 n + 1
Assertion atantayl3 A A < 1 seq 0 + F arctan A

Proof

Step Hyp Ref Expression
1 atantayl3.1 F = n 0 1 n A 2 n + 1 2 n + 1
2 2nn0 2 0
3 simpr A A < 1 n 0 n 0
4 nn0mulcl 2 0 n 0 2 n 0
5 2 3 4 sylancr A A < 1 n 0 2 n 0
6 5 nn0cnd A A < 1 n 0 2 n
7 ax-1cn 1
8 pncan 2 n 1 2 n + 1 - 1 = 2 n
9 6 7 8 sylancl A A < 1 n 0 2 n + 1 - 1 = 2 n
10 9 oveq1d A A < 1 n 0 2 n + 1 - 1 2 = 2 n 2
11 nn0cn n 0 n
12 11 adantl A A < 1 n 0 n
13 2cnd A A < 1 n 0 2
14 2ne0 2 0
15 14 a1i A A < 1 n 0 2 0
16 12 13 15 divcan3d A A < 1 n 0 2 n 2 = n
17 10 16 eqtr2d A A < 1 n 0 n = 2 n + 1 - 1 2
18 17 oveq2d A A < 1 n 0 1 n = 1 2 n + 1 - 1 2
19 18 oveq1d A A < 1 n 0 1 n A 2 n + 1 2 n + 1 = 1 2 n + 1 - 1 2 A 2 n + 1 2 n + 1
20 19 mpteq2dva A A < 1 n 0 1 n A 2 n + 1 2 n + 1 = n 0 1 2 n + 1 - 1 2 A 2 n + 1 2 n + 1
21 1 20 syl5eq A A < 1 F = n 0 1 2 n + 1 - 1 2 A 2 n + 1 2 n + 1
22 21 seqeq3d A A < 1 seq 0 + F = seq 0 + n 0 1 2 n + 1 - 1 2 A 2 n + 1 2 n + 1
23 eqid k if 2 k 0 1 k 1 2 A k k = k if 2 k 0 1 k 1 2 A k k
24 23 atantayl2 A A < 1 seq 1 + k if 2 k 0 1 k 1 2 A k k arctan A
25 neg1cn 1
26 expcl 1 n 0 1 n
27 25 3 26 sylancr A A < 1 n 0 1 n
28 simpll A A < 1 n 0 A
29 peano2nn0 2 n 0 2 n + 1 0
30 5 29 syl A A < 1 n 0 2 n + 1 0
31 28 30 expcld A A < 1 n 0 A 2 n + 1
32 nn0p1nn 2 n 0 2 n + 1
33 5 32 syl A A < 1 n 0 2 n + 1
34 33 nncnd A A < 1 n 0 2 n + 1
35 33 nnne0d A A < 1 n 0 2 n + 1 0
36 31 34 35 divcld A A < 1 n 0 A 2 n + 1 2 n + 1
37 27 36 mulcld A A < 1 n 0 1 n A 2 n + 1 2 n + 1
38 19 37 eqeltrrd A A < 1 n 0 1 2 n + 1 - 1 2 A 2 n + 1 2 n + 1
39 oveq1 k = 2 n + 1 k 1 = 2 n + 1 - 1
40 39 oveq1d k = 2 n + 1 k 1 2 = 2 n + 1 - 1 2
41 40 oveq2d k = 2 n + 1 1 k 1 2 = 1 2 n + 1 - 1 2
42 oveq2 k = 2 n + 1 A k = A 2 n + 1
43 id k = 2 n + 1 k = 2 n + 1
44 42 43 oveq12d k = 2 n + 1 A k k = A 2 n + 1 2 n + 1
45 41 44 oveq12d k = 2 n + 1 1 k 1 2 A k k = 1 2 n + 1 - 1 2 A 2 n + 1 2 n + 1
46 38 45 iserodd A A < 1 seq 0 + n 0 1 2 n + 1 - 1 2 A 2 n + 1 2 n + 1 arctan A seq 1 + k if 2 k 0 1 k 1 2 A k k arctan A
47 24 46 mpbird A A < 1 seq 0 + n 0 1 2 n + 1 - 1 2 A 2 n + 1 2 n + 1 arctan A
48 22 47 eqbrtrd A A < 1 seq 0 + F arctan A