Metamath Proof Explorer


Theorem atcvat3i

Description: A condition implying that a certain lattice element is an atom. Part of Lemma 3.2.20 of PtakPulmannova p. 68. (Contributed by NM, 2-Jul-2004) (New usage is discouraged.)

Ref Expression
Hypothesis atcvat3.1 AC
Assertion atcvat3i BHAtomsCHAtoms¬B=C¬CABACABCHAtoms

Proof

Step Hyp Ref Expression
1 atcvat3.1 AC
2 chcv1 ACCHAtoms¬CAAAC
3 1 2 mpan CHAtoms¬CAAAC
4 3 biimpa CHAtoms¬CAAAC
5 4 ad2ant2lr BHAtomsCHAtoms¬CABACAAC
6 atelch BHAtomsBC
7 atelch CHAtomsCC
8 6 7 anim12i BHAtomsCHAtomsBCCC
9 chjcom BCCCBC=CB
10 9 oveq2d BCCCABC=ACB
11 chjass ACCCBCACB=ACB
12 1 11 mp3an1 CCBCACB=ACB
13 12 ancoms BCCCACB=ACB
14 10 13 eqtr4d BCCCABC=ACB
15 14 adantr BCCCBACABC=ACB
16 simpl BCCCBC
17 chjcl ACCCACC
18 1 17 mpan CCACC
19 18 adantl BCCCACC
20 chlej2 BCACCACCBACACBACAC
21 20 ex BCACCACCBACACBACAC
22 16 19 19 21 syl3anc BCCCBACACBACAC
23 22 imp BCCCBACACBACAC
24 15 23 eqsstrd BCCCBACABCACAC
25 chjidm ACCACAC=AC
26 18 25 syl CCACAC=AC
27 26 ad2antlr BCCCBACACAC=AC
28 24 27 sseqtrd BCCCBACABCAC
29 simpr BCCCCC
30 chjcl BCCCBCC
31 chub2 CCBCCBC
32 31 ancoms BCCCCBC
33 chlej2 CCBCCACCBCACABC
34 1 33 mp3anl3 CCBCCCBCACABC
35 29 30 32 34 syl21anc BCCCACABC
36 35 adantr BCCCBACACABC
37 28 36 eqssd BCCCBACABC=AC
38 8 37 sylan BHAtomsCHAtomsBACABC=AC
39 38 breq2d BHAtomsCHAtomsBACAABCAAC
40 39 adantrl BHAtomsCHAtoms¬CABACAABCAAC
41 5 40 mpbird BHAtomsCHAtoms¬CABACAABC
42 41 ex BHAtomsCHAtoms¬CABACAABC
43 30 1 jctil BCCCACBCC
44 6 7 43 syl2an BHAtomsCHAtomsACBCC
45 cvexch ACBCCABCBCAABC
46 44 45 syl BHAtomsCHAtomsABCBCAABC
47 42 46 sylibrd BHAtomsCHAtoms¬CABACABCBC
48 47 adantr BHAtomsCHAtoms¬B=C¬CABACABCBC
49 chincl ACBCCABCC
50 1 30 49 sylancr BCCCABCC
51 6 7 50 syl2an BHAtomsCHAtomsABCC
52 simpl BHAtomsCHAtomsBHAtoms
53 simpr BHAtomsCHAtomsCHAtoms
54 atcvat2 ABCCBHAtomsCHAtoms¬B=CABCBCABCHAtoms
55 51 52 53 54 syl3anc BHAtomsCHAtoms¬B=CABCBCABCHAtoms
56 55 expdimp BHAtomsCHAtoms¬B=CABCBCABCHAtoms
57 48 56 syld BHAtomsCHAtoms¬B=C¬CABACABCHAtoms
58 57 exp4b BHAtomsCHAtoms¬B=C¬CABACABCHAtoms
59 58 imp4c BHAtomsCHAtoms¬B=C¬CABACABCHAtoms