Description: A condition implying that a certain lattice element is an atom. Part of Lemma 3.2.20 of PtakPulmannova p. 68. (Contributed by NM, 2-Jul-2004) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypothesis | atcvat3.1 | |
|
Assertion | atcvat3i | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | atcvat3.1 | |
|
2 | chcv1 | |
|
3 | 1 2 | mpan | |
4 | 3 | biimpa | |
5 | 4 | ad2ant2lr | |
6 | atelch | |
|
7 | atelch | |
|
8 | 6 7 | anim12i | |
9 | chjcom | |
|
10 | 9 | oveq2d | |
11 | chjass | |
|
12 | 1 11 | mp3an1 | |
13 | 12 | ancoms | |
14 | 10 13 | eqtr4d | |
15 | 14 | adantr | |
16 | simpl | |
|
17 | chjcl | |
|
18 | 1 17 | mpan | |
19 | 18 | adantl | |
20 | chlej2 | |
|
21 | 20 | ex | |
22 | 16 19 19 21 | syl3anc | |
23 | 22 | imp | |
24 | 15 23 | eqsstrd | |
25 | chjidm | |
|
26 | 18 25 | syl | |
27 | 26 | ad2antlr | |
28 | 24 27 | sseqtrd | |
29 | simpr | |
|
30 | chjcl | |
|
31 | chub2 | |
|
32 | 31 | ancoms | |
33 | chlej2 | |
|
34 | 1 33 | mp3anl3 | |
35 | 29 30 32 34 | syl21anc | |
36 | 35 | adantr | |
37 | 28 36 | eqssd | |
38 | 8 37 | sylan | |
39 | 38 | breq2d | |
40 | 39 | adantrl | |
41 | 5 40 | mpbird | |
42 | 41 | ex | |
43 | 30 1 | jctil | |
44 | 6 7 43 | syl2an | |
45 | cvexch | |
|
46 | 44 45 | syl | |
47 | 42 46 | sylibrd | |
48 | 47 | adantr | |
49 | chincl | |
|
50 | 1 30 49 | sylancr | |
51 | 6 7 50 | syl2an | |
52 | simpl | |
|
53 | simpr | |
|
54 | atcvat2 | |
|
55 | 51 52 53 54 | syl3anc | |
56 | 55 | expdimp | |
57 | 48 56 | syld | |
58 | 57 | exp4b | |
59 | 58 | imp4c | |