| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simp2 |  | 
						
							| 2 |  | simp3 |  | 
						
							| 3 |  | brbtwn |  | 
						
							| 4 | 1 2 2 3 | syl3anc |  | 
						
							| 5 |  | elicc01 |  | 
						
							| 6 | 5 | simp1bi |  | 
						
							| 7 | 6 | recnd |  | 
						
							| 8 |  | eqeefv |  | 
						
							| 9 | 8 | 3adant1 |  | 
						
							| 10 | 9 | adantr |  | 
						
							| 11 |  | ax-1cn |  | 
						
							| 12 |  | npcan |  | 
						
							| 13 | 11 12 | mpan |  | 
						
							| 14 | 13 | ad2antlr |  | 
						
							| 15 | 14 | oveq1d |  | 
						
							| 16 |  | subcl |  | 
						
							| 17 | 11 16 | mpan |  | 
						
							| 18 | 17 | ad2antlr |  | 
						
							| 19 |  | simplr |  | 
						
							| 20 |  | simpll3 |  | 
						
							| 21 |  | fveecn |  | 
						
							| 22 | 20 21 | sylancom |  | 
						
							| 23 | 18 19 22 | adddird |  | 
						
							| 24 | 22 | mullidd |  | 
						
							| 25 | 15 23 24 | 3eqtr3rd |  | 
						
							| 26 | 25 | eqeq2d |  | 
						
							| 27 | 26 | ralbidva |  | 
						
							| 28 | 10 27 | bitrd |  | 
						
							| 29 | 28 | biimprd |  | 
						
							| 30 | 7 29 | sylan2 |  | 
						
							| 31 | 30 | rexlimdva |  | 
						
							| 32 | 4 31 | sylbid |  |