Metamath Proof Explorer


Theorem axbtwnid

Description: Points are indivisible. That is, if A lies between B and B , then A = B . Axiom A6 of Schwabhauser p. 11. (Contributed by Scott Fenton, 3-Jun-2013)

Ref Expression
Assertion axbtwnid N A 𝔼 N B 𝔼 N A Btwn B B A = B

Proof

Step Hyp Ref Expression
1 simp2 N A 𝔼 N B 𝔼 N A 𝔼 N
2 simp3 N A 𝔼 N B 𝔼 N B 𝔼 N
3 brbtwn A 𝔼 N B 𝔼 N B 𝔼 N A Btwn B B t 0 1 i 1 N A i = 1 t B i + t B i
4 1 2 2 3 syl3anc N A 𝔼 N B 𝔼 N A Btwn B B t 0 1 i 1 N A i = 1 t B i + t B i
5 elicc01 t 0 1 t 0 t t 1
6 5 simp1bi t 0 1 t
7 6 recnd t 0 1 t
8 eqeefv A 𝔼 N B 𝔼 N A = B i 1 N A i = B i
9 8 3adant1 N A 𝔼 N B 𝔼 N A = B i 1 N A i = B i
10 9 adantr N A 𝔼 N B 𝔼 N t A = B i 1 N A i = B i
11 ax-1cn 1
12 npcan 1 t 1 - t + t = 1
13 11 12 mpan t 1 - t + t = 1
14 13 ad2antlr N A 𝔼 N B 𝔼 N t i 1 N 1 - t + t = 1
15 14 oveq1d N A 𝔼 N B 𝔼 N t i 1 N 1 - t + t B i = 1 B i
16 subcl 1 t 1 t
17 11 16 mpan t 1 t
18 17 ad2antlr N A 𝔼 N B 𝔼 N t i 1 N 1 t
19 simplr N A 𝔼 N B 𝔼 N t i 1 N t
20 simpll3 N A 𝔼 N B 𝔼 N t i 1 N B 𝔼 N
21 fveecn B 𝔼 N i 1 N B i
22 20 21 sylancom N A 𝔼 N B 𝔼 N t i 1 N B i
23 18 19 22 adddird N A 𝔼 N B 𝔼 N t i 1 N 1 - t + t B i = 1 t B i + t B i
24 22 mulid2d N A 𝔼 N B 𝔼 N t i 1 N 1 B i = B i
25 15 23 24 3eqtr3rd N A 𝔼 N B 𝔼 N t i 1 N B i = 1 t B i + t B i
26 25 eqeq2d N A 𝔼 N B 𝔼 N t i 1 N A i = B i A i = 1 t B i + t B i
27 26 ralbidva N A 𝔼 N B 𝔼 N t i 1 N A i = B i i 1 N A i = 1 t B i + t B i
28 10 27 bitrd N A 𝔼 N B 𝔼 N t A = B i 1 N A i = 1 t B i + t B i
29 28 biimprd N A 𝔼 N B 𝔼 N t i 1 N A i = 1 t B i + t B i A = B
30 7 29 sylan2 N A 𝔼 N B 𝔼 N t 0 1 i 1 N A i = 1 t B i + t B i A = B
31 30 rexlimdva N A 𝔼 N B 𝔼 N t 0 1 i 1 N A i = 1 t B i + t B i A = B
32 4 31 sylbid N A 𝔼 N B 𝔼 N A Btwn B B A = B