Description: Distributive law for complex numbers (left-distributivity). Axiom 11 of 22 for real and complex numbers, derived from ZF set theory. This construction-dependent theorem should not be referenced directly, nor should the proven axiom ax-distr be used later. Instead, use adddi . (Contributed by NM, 2-Sep-1995) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | axdistr | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfcnqs | |
|
2 | addcnsrec | |
|
3 | mulcnsrec | |
|
4 | mulcnsrec | |
|
5 | mulcnsrec | |
|
6 | addcnsrec | |
|
7 | addclsr | |
|
8 | addclsr | |
|
9 | 7 8 | anim12i | |
10 | 9 | an4s | |
11 | mulclsr | |
|
12 | m1r | |
|
13 | mulclsr | |
|
14 | mulclsr | |
|
15 | 12 13 14 | sylancr | |
16 | addclsr | |
|
17 | 11 15 16 | syl2an | |
18 | 17 | an4s | |
19 | mulclsr | |
|
20 | mulclsr | |
|
21 | addclsr | |
|
22 | 19 20 21 | syl2anr | |
23 | 22 | an42s | |
24 | 18 23 | jca | |
25 | mulclsr | |
|
26 | mulclsr | |
|
27 | mulclsr | |
|
28 | 12 26 27 | sylancr | |
29 | addclsr | |
|
30 | 25 28 29 | syl2an | |
31 | 30 | an4s | |
32 | mulclsr | |
|
33 | mulclsr | |
|
34 | addclsr | |
|
35 | 32 33 34 | syl2anr | |
36 | 35 | an42s | |
37 | 31 36 | jca | |
38 | distrsr | |
|
39 | distrsr | |
|
40 | 39 | oveq2i | |
41 | distrsr | |
|
42 | 40 41 | eqtri | |
43 | 38 42 | oveq12i | |
44 | ovex | |
|
45 | ovex | |
|
46 | ovex | |
|
47 | addcomsr | |
|
48 | addasssr | |
|
49 | ovex | |
|
50 | 44 45 46 47 48 49 | caov4 | |
51 | 43 50 | eqtri | |
52 | distrsr | |
|
53 | distrsr | |
|
54 | 52 53 | oveq12i | |
55 | ovex | |
|
56 | ovex | |
|
57 | ovex | |
|
58 | ovex | |
|
59 | 55 56 57 47 48 58 | caov4 | |
60 | 54 59 | eqtri | |
61 | 1 2 3 4 5 6 10 24 37 51 60 | ecovdi | |