Description: Existence of reciprocal of nonzero real number. Axiom 16 of 22 for real and complex numbers, derived from ZF set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-rrecex . (Contributed by NM, 15-May-1996) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | axrrecex | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elreal | |
|
2 | df-rex | |
|
3 | 1 2 | bitri | |
4 | neeq1 | |
|
5 | oveq1 | |
|
6 | 5 | eqeq1d | |
7 | 6 | rexbidv | |
8 | 4 7 | imbi12d | |
9 | df-0 | |
|
10 | 9 | eqeq2i | |
11 | vex | |
|
12 | 11 | eqresr | |
13 | 10 12 | bitri | |
14 | 13 | necon3bii | |
15 | recexsr | |
|
16 | 15 | ex | |
17 | opelreal | |
|
18 | 17 | anbi1i | |
19 | mulresr | |
|
20 | 19 | eqeq1d | |
21 | df-1 | |
|
22 | 21 | eqeq2i | |
23 | ovex | |
|
24 | 23 | eqresr | |
25 | 22 24 | bitri | |
26 | 20 25 | bitrdi | |
27 | 26 | pm5.32da | |
28 | 18 27 | bitrid | |
29 | oveq2 | |
|
30 | 29 | eqeq1d | |
31 | 30 | rspcev | |
32 | 28 31 | syl6bir | |
33 | 32 | expd | |
34 | 33 | rexlimdv | |
35 | 16 34 | syld | |
36 | 14 35 | biimtrid | |
37 | 3 8 36 | gencl | |
38 | 37 | imp | |