Metamath Proof Explorer


Theorem axrrecex

Description: Existence of reciprocal of nonzero real number. Axiom 16 of 22 for real and complex numbers, derived from ZF set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-rrecex . (Contributed by NM, 15-May-1996) (New usage is discouraged.)

Ref Expression
Assertion axrrecex AA0xAx=1

Proof

Step Hyp Ref Expression
1 elreal Ay𝑹y0𝑹=A
2 df-rex y𝑹y0𝑹=Ayy𝑹y0𝑹=A
3 1 2 bitri Ayy𝑹y0𝑹=A
4 neeq1 y0𝑹=Ay0𝑹0A0
5 oveq1 y0𝑹=Ay0𝑹x=Ax
6 5 eqeq1d y0𝑹=Ay0𝑹x=1Ax=1
7 6 rexbidv y0𝑹=Axy0𝑹x=1xAx=1
8 4 7 imbi12d y0𝑹=Ay0𝑹0xy0𝑹x=1A0xAx=1
9 df-0 0=0𝑹0𝑹
10 9 eqeq2i y0𝑹=0y0𝑹=0𝑹0𝑹
11 vex yV
12 11 eqresr y0𝑹=0𝑹0𝑹y=0𝑹
13 10 12 bitri y0𝑹=0y=0𝑹
14 13 necon3bii y0𝑹0y0𝑹
15 recexsr y𝑹y0𝑹z𝑹y𝑹z=1𝑹
16 15 ex y𝑹y0𝑹z𝑹y𝑹z=1𝑹
17 opelreal z0𝑹z𝑹
18 17 anbi1i z0𝑹y0𝑹z0𝑹=1z𝑹y0𝑹z0𝑹=1
19 mulresr y𝑹z𝑹y0𝑹z0𝑹=y𝑹z0𝑹
20 19 eqeq1d y𝑹z𝑹y0𝑹z0𝑹=1y𝑹z0𝑹=1
21 df-1 1=1𝑹0𝑹
22 21 eqeq2i y𝑹z0𝑹=1y𝑹z0𝑹=1𝑹0𝑹
23 ovex y𝑹zV
24 23 eqresr y𝑹z0𝑹=1𝑹0𝑹y𝑹z=1𝑹
25 22 24 bitri y𝑹z0𝑹=1y𝑹z=1𝑹
26 20 25 bitrdi y𝑹z𝑹y0𝑹z0𝑹=1y𝑹z=1𝑹
27 26 pm5.32da y𝑹z𝑹y0𝑹z0𝑹=1z𝑹y𝑹z=1𝑹
28 18 27 bitrid y𝑹z0𝑹y0𝑹z0𝑹=1z𝑹y𝑹z=1𝑹
29 oveq2 x=z0𝑹y0𝑹x=y0𝑹z0𝑹
30 29 eqeq1d x=z0𝑹y0𝑹x=1y0𝑹z0𝑹=1
31 30 rspcev z0𝑹y0𝑹z0𝑹=1xy0𝑹x=1
32 28 31 syl6bir y𝑹z𝑹y𝑹z=1𝑹xy0𝑹x=1
33 32 expd y𝑹z𝑹y𝑹z=1𝑹xy0𝑹x=1
34 33 rexlimdv y𝑹z𝑹y𝑹z=1𝑹xy0𝑹x=1
35 16 34 syld y𝑹y0𝑹xy0𝑹x=1
36 14 35 biimtrid y𝑹y0𝑹0xy0𝑹x=1
37 3 8 36 gencl AA0xAx=1
38 37 imp AA0xAx=1