Metamath Proof Explorer


Theorem basellem7

Description: Lemma for basel . The function 1 + A x. G for any fixed A goes to 1 . (Contributed by Mario Carneiro, 28-Jul-2014)

Ref Expression
Hypotheses basel.g G=n12n+1
basellem7.2 A
Assertion basellem7 ×1+f×A×fG1

Proof

Step Hyp Ref Expression
1 basel.g G=n12n+1
2 basellem7.2 A
3 nnuz =1
4 1zzd 1
5 ax-1cn 1
6 3 eqimss2i 1
7 nnex V
8 6 7 climconst2 11×11
9 5 4 8 sylancr ×11
10 ovexd ×1+f×A×fGV
11 6 7 climconst2 A1×AA
12 2 4 11 sylancr ×AA
13 ovexd ×A×fGV
14 1 basellem6 G0
15 14 a1i G0
16 2 elexi AV
17 16 fconst ×A:A
18 2 a1i A
19 18 snssd A
20 fss ×A:AA×A:
21 17 19 20 sylancr ×A:
22 21 ffvelcdmda k×Ak
23 2nn 2
24 23 a1i 2
25 nnmulcl 2n2n
26 24 25 sylan n2n
27 26 peano2nnd n2n+1
28 27 nnrecred n12n+1
29 28 recnd n12n+1
30 29 1 fmptd G:
31 30 ffvelcdmda kGk
32 21 ffnd ×AFn
33 30 ffnd GFn
34 7 a1i V
35 inidm =
36 eqidd k×Ak=×Ak
37 eqidd kGk=Gk
38 32 33 34 34 35 36 37 ofval k×A×fGk=×AkGk
39 3 4 12 13 15 22 31 38 climmul ×A×fGA0
40 2 mul01i A0=0
41 39 40 breqtrdi ×A×fG0
42 1ex 1V
43 42 fconst ×1:1
44 5 a1i 1
45 44 snssd 1
46 fss ×1:11×1:
47 43 45 46 sylancr ×1:
48 47 ffvelcdmda k×1k
49 mulcl xyxy
50 49 adantl xyxy
51 50 21 30 34 34 35 off ×A×fG:
52 51 ffvelcdmda k×A×fGk
53 43 a1i ×1:1
54 53 ffnd ×1Fn
55 51 ffnd ×A×fGFn
56 eqidd k×1k=×1k
57 eqidd k×A×fGk=×A×fGk
58 54 55 34 34 35 56 57 ofval k×1+f×A×fGk=×1k+×A×fGk
59 3 4 9 10 41 48 52 58 climadd ×1+f×A×fG1+0
60 59 mptru ×1+f×A×fG1+0
61 1p0e1 1+0=1
62 60 61 breqtri ×1+f×A×fG1