| Step |
Hyp |
Ref |
Expression |
| 1 |
|
bcval2 |
|
| 2 |
|
fznn0sub2 |
|
| 3 |
|
bcval2 |
|
| 4 |
2 3
|
syl |
|
| 5 |
|
elfznn0 |
|
| 6 |
5
|
faccld |
|
| 7 |
6
|
nncnd |
|
| 8 |
2 7
|
syl |
|
| 9 |
|
elfznn0 |
|
| 10 |
9
|
faccld |
|
| 11 |
10
|
nncnd |
|
| 12 |
8 11
|
mulcomd |
|
| 13 |
|
elfz3nn0 |
|
| 14 |
|
elfzelz |
|
| 15 |
|
nn0cn |
|
| 16 |
|
zcn |
|
| 17 |
|
nncan |
|
| 18 |
15 16 17
|
syl2an |
|
| 19 |
13 14 18
|
syl2anc |
|
| 20 |
19
|
fveq2d |
|
| 21 |
20
|
oveq1d |
|
| 22 |
12 21
|
eqtr4d |
|
| 23 |
22
|
oveq2d |
|
| 24 |
4 23
|
eqtr4d |
|
| 25 |
1 24
|
eqtr4d |
|
| 26 |
25
|
adantl |
|
| 27 |
|
bcval3 |
|
| 28 |
|
simp1 |
|
| 29 |
|
nn0z |
|
| 30 |
|
zsubcl |
|
| 31 |
29 30
|
sylan |
|
| 32 |
31
|
3adant3 |
|
| 33 |
|
fznn0sub2 |
|
| 34 |
18
|
eleq1d |
|
| 35 |
33 34
|
imbitrid |
|
| 36 |
35
|
con3d |
|
| 37 |
36
|
3impia |
|
| 38 |
|
bcval3 |
|
| 39 |
28 32 37 38
|
syl3anc |
|
| 40 |
27 39
|
eqtr4d |
|
| 41 |
40
|
3expa |
|
| 42 |
26 41
|
pm2.61dan |
|