Metamath Proof Explorer


Theorem bcp1nk

Description: The proportion of one binomial coefficient to another with N and K increased by 1. (Contributed by Mario Carneiro, 16-Jan-2015)

Ref Expression
Assertion bcp1nk K0N(N+1K+1)=(NK)N+1K+1

Proof

Step Hyp Ref Expression
1 elfzel1 K0N0
2 elfzel2 K0NN
3 elfzelz K0NK
4 1zzd K0N1
5 fzaddel 0NK1K0NK+10+1N+1
6 1 2 3 4 5 syl22anc K0NK0NK+10+1N+1
7 6 ibi K0NK+10+1N+1
8 1e0p1 1=0+1
9 8 oveq1i 1N+1=0+1N+1
10 7 9 eleqtrrdi K0NK+11N+1
11 bcm1k K+11N+1(N+1K+1)=(N+1K+1-1)N+1-K+1-1K+1
12 10 11 syl K0N(N+1K+1)=(N+1K+1-1)N+1-K+1-1K+1
13 3 zcnd K0NK
14 ax-1cn 1
15 pncan K1K+1-1=K
16 13 14 15 sylancl K0NK+1-1=K
17 16 oveq2d K0N(N+1K+1-1)=(N+1K)
18 bcp1n K0N(N+1K)=(NK)N+1N+1-K
19 17 18 eqtrd K0N(N+1K+1-1)=(NK)N+1N+1-K
20 16 oveq2d K0NN+1-K+1-1=N+1-K
21 20 oveq1d K0NN+1-K+1-1K+1=N+1-KK+1
22 19 21 oveq12d K0N(N+1K+1-1)N+1-K+1-1K+1=(NK)N+1N+1-KN+1-KK+1
23 bcrpcl K0N(NK)+
24 23 rpcnd K0N(NK)
25 2 peano2zd K0NN+1
26 25 zred K0NN+1
27 3 zred K0NK
28 2 zred K0NN
29 elfzle2 K0NKN
30 28 ltp1d K0NN<N+1
31 27 28 26 29 30 lelttrd K0NK<N+1
32 znnsub KN+1K<N+1N+1-K
33 3 25 32 syl2anc K0NK<N+1N+1-K
34 31 33 mpbid K0NN+1-K
35 26 34 nndivred K0NN+1N+1-K
36 35 recnd K0NN+1N+1-K
37 34 nnred K0NN+1-K
38 elfznn0 K0NK0
39 nn0p1nn K0K+1
40 38 39 syl K0NK+1
41 37 40 nndivred K0NN+1-KK+1
42 41 recnd K0NN+1-KK+1
43 24 36 42 mulassd K0N(NK)N+1N+1-KN+1-KK+1=(NK)N+1N+1-KN+1-KK+1
44 25 zcnd K0NN+1
45 34 nncnd K0NN+1-K
46 40 nncnd K0NK+1
47 34 nnne0d K0NN+1-K0
48 40 nnne0d K0NK+10
49 44 45 46 47 48 dmdcan2d K0NN+1N+1-KN+1-KK+1=N+1K+1
50 49 oveq2d K0N(NK)N+1N+1-KN+1-KK+1=(NK)N+1K+1
51 43 50 eqtrd K0N(NK)N+1N+1-KN+1-KK+1=(NK)N+1K+1
52 22 51 eqtrd K0N(N+1K+1-1)N+1-K+1-1K+1=(NK)N+1K+1
53 12 52 eqtrd K0N(N+1K+1)=(NK)N+1K+1