Metamath Proof Explorer


Theorem binom3

Description: The cube of a binomial. (Contributed by Mario Carneiro, 24-Apr-2015)

Ref Expression
Assertion binom3 ABA+B3=A3+3A2B+3AB2+B3

Proof

Step Hyp Ref Expression
1 df-3 3=2+1
2 1 oveq2i A+B3=A+B2+1
3 addcl ABA+B
4 2nn0 20
5 expp1 A+B20A+B2+1=A+B2A+B
6 3 4 5 sylancl ABA+B2+1=A+B2A+B
7 2 6 eqtrid ABA+B3=A+B2A+B
8 sqcl A+BA+B2
9 3 8 syl ABA+B2
10 simpl ABA
11 simpr ABB
12 9 10 11 adddid ABA+B2A+B=A+B2A+A+B2B
13 binom2 ABA+B2=A2+2AB+B2
14 13 oveq1d ABA+B2A=A2+2AB+B2A
15 sqcl AA2
16 10 15 syl ABA2
17 2cn 2
18 mulcl ABAB
19 mulcl 2AB2AB
20 17 18 19 sylancr AB2AB
21 16 20 addcld ABA2+2AB
22 sqcl BB2
23 11 22 syl ABB2
24 21 23 10 adddird ABA2+2AB+B2A=A2+2ABA+B2A
25 16 20 10 adddird ABA2+2ABA=A2A+2ABA
26 1 oveq2i A3=A2+1
27 expp1 A20A2+1=A2A
28 10 4 27 sylancl ABA2+1=A2A
29 26 28 eqtrid ABA3=A2A
30 sqval AA2=AA
31 10 30 syl ABA2=AA
32 31 oveq1d ABA2B=AAB
33 10 10 11 mul32d ABAAB=ABA
34 32 33 eqtrd ABA2B=ABA
35 34 oveq2d AB2A2B=2ABA
36 2cnd AB2
37 36 18 10 mulassd AB2ABA=2ABA
38 35 37 eqtr4d AB2A2B=2ABA
39 29 38 oveq12d ABA3+2A2B=A2A+2ABA
40 25 39 eqtr4d ABA2+2ABA=A3+2A2B
41 23 10 mulcomd ABB2A=AB2
42 40 41 oveq12d ABA2+2ABA+B2A=A3+2A2B+AB2
43 14 24 42 3eqtrd ABA+B2A=A3+2A2B+AB2
44 13 oveq1d ABA+B2B=A2+2AB+B2B
45 21 23 11 adddird ABA2+2AB+B2B=A2+2ABB+B2B
46 sqval BB2=BB
47 11 46 syl ABB2=BB
48 47 oveq2d ABAB2=ABB
49 10 11 11 mulassd ABABB=ABB
50 48 49 eqtr4d ABAB2=ABB
51 50 oveq2d AB2AB2=2ABB
52 36 18 11 mulassd AB2ABB=2ABB
53 51 52 eqtr4d AB2AB2=2ABB
54 53 oveq2d ABA2B+2AB2=A2B+2ABB
55 16 20 11 adddird ABA2+2ABB=A2B+2ABB
56 54 55 eqtr4d ABA2B+2AB2=A2+2ABB
57 1 oveq2i B3=B2+1
58 expp1 B20B2+1=B2B
59 11 4 58 sylancl ABB2+1=B2B
60 57 59 eqtrid ABB3=B2B
61 56 60 oveq12d ABA2B+2AB2+B3=A2+2ABB+B2B
62 16 11 mulcld ABA2B
63 10 23 mulcld ABAB2
64 mulcl 2AB22AB2
65 17 63 64 sylancr AB2AB2
66 3nn0 30
67 expcl B30B3
68 11 66 67 sylancl ABB3
69 62 65 68 addassd ABA2B+2AB2+B3=A2B+2AB2+B3
70 61 69 eqtr3d ABA2+2ABB+B2B=A2B+2AB2+B3
71 44 45 70 3eqtrd ABA+B2B=A2B+2AB2+B3
72 43 71 oveq12d ABA+B2A+A+B2B=A3+2A2B+AB2+A2B+2AB2+B3
73 expcl A30A3
74 10 66 73 sylancl ABA3
75 mulcl 2A2B2A2B
76 17 62 75 sylancr AB2A2B
77 74 76 addcld ABA3+2A2B
78 65 68 addcld AB2AB2+B3
79 77 63 62 78 add4d ABA3+2A2B+AB2+A2B+2AB2+B3=A3+2A2B+A2B+AB2+2AB2+B3
80 12 72 79 3eqtrd ABA+B2A+B=A3+2A2B+A2B+AB2+2AB2+B3
81 74 76 62 addassd ABA3+2A2B+A2B=A3+2A2B+A2B
82 1 oveq1i 3A2B=2+1A2B
83 1cnd AB1
84 36 83 62 adddird AB2+1A2B=2A2B+1A2B
85 82 84 eqtrid AB3A2B=2A2B+1A2B
86 62 mullidd AB1A2B=A2B
87 86 oveq2d AB2A2B+1A2B=2A2B+A2B
88 85 87 eqtrd AB3A2B=2A2B+A2B
89 88 oveq2d ABA3+3A2B=A3+2A2B+A2B
90 81 89 eqtr4d ABA3+2A2B+A2B=A3+3A2B
91 1p2e3 1+2=3
92 91 oveq1i 1+2AB2=3AB2
93 83 36 63 adddird AB1+2AB2=1AB2+2AB2
94 92 93 eqtr3id AB3AB2=1AB2+2AB2
95 63 mullidd AB1AB2=AB2
96 95 oveq1d AB1AB2+2AB2=AB2+2AB2
97 94 96 eqtrd AB3AB2=AB2+2AB2
98 97 oveq1d AB3AB2+B3=AB2+2AB2+B3
99 63 65 68 addassd ABAB2+2AB2+B3=AB2+2AB2+B3
100 98 99 eqtr2d ABAB2+2AB2+B3=3AB2+B3
101 90 100 oveq12d ABA3+2A2B+A2B+AB2+2AB2+B3=A3+3A2B+3AB2+B3
102 7 80 101 3eqtrd ABA+B3=A3+3A2B+3AB2+B3