Database
REAL AND COMPLEX NUMBERS
Elementary integer functions
Integer powers
binom3
Next ⟩
sq01
Metamath Proof Explorer
Ascii
Unicode
Theorem
binom3
Description:
The cube of a binomial.
(Contributed by
Mario Carneiro
, 24-Apr-2015)
Ref
Expression
Assertion
binom3
⊢
A
∈
ℂ
∧
B
∈
ℂ
→
A
+
B
3
=
A
3
+
3
A
2
B
+
3
A
B
2
+
B
3
Proof
Step
Hyp
Ref
Expression
1
df-3
⊢
3
=
2
+
1
2
1
oveq2i
⊢
A
+
B
3
=
A
+
B
2
+
1
3
addcl
⊢
A
∈
ℂ
∧
B
∈
ℂ
→
A
+
B
∈
ℂ
4
2nn0
⊢
2
∈
ℕ
0
5
expp1
⊢
A
+
B
∈
ℂ
∧
2
∈
ℕ
0
→
A
+
B
2
+
1
=
A
+
B
2
A
+
B
6
3
4
5
sylancl
⊢
A
∈
ℂ
∧
B
∈
ℂ
→
A
+
B
2
+
1
=
A
+
B
2
A
+
B
7
2
6
eqtrid
⊢
A
∈
ℂ
∧
B
∈
ℂ
→
A
+
B
3
=
A
+
B
2
A
+
B
8
sqcl
⊢
A
+
B
∈
ℂ
→
A
+
B
2
∈
ℂ
9
3
8
syl
⊢
A
∈
ℂ
∧
B
∈
ℂ
→
A
+
B
2
∈
ℂ
10
simpl
⊢
A
∈
ℂ
∧
B
∈
ℂ
→
A
∈
ℂ
11
simpr
⊢
A
∈
ℂ
∧
B
∈
ℂ
→
B
∈
ℂ
12
9
10
11
adddid
⊢
A
∈
ℂ
∧
B
∈
ℂ
→
A
+
B
2
A
+
B
=
A
+
B
2
A
+
A
+
B
2
B
13
binom2
⊢
A
∈
ℂ
∧
B
∈
ℂ
→
A
+
B
2
=
A
2
+
2
A
B
+
B
2
14
13
oveq1d
⊢
A
∈
ℂ
∧
B
∈
ℂ
→
A
+
B
2
A
=
A
2
+
2
A
B
+
B
2
A
15
sqcl
⊢
A
∈
ℂ
→
A
2
∈
ℂ
16
10
15
syl
⊢
A
∈
ℂ
∧
B
∈
ℂ
→
A
2
∈
ℂ
17
2cn
⊢
2
∈
ℂ
18
mulcl
⊢
A
∈
ℂ
∧
B
∈
ℂ
→
A
B
∈
ℂ
19
mulcl
⊢
2
∈
ℂ
∧
A
B
∈
ℂ
→
2
A
B
∈
ℂ
20
17
18
19
sylancr
⊢
A
∈
ℂ
∧
B
∈
ℂ
→
2
A
B
∈
ℂ
21
16
20
addcld
⊢
A
∈
ℂ
∧
B
∈
ℂ
→
A
2
+
2
A
B
∈
ℂ
22
sqcl
⊢
B
∈
ℂ
→
B
2
∈
ℂ
23
11
22
syl
⊢
A
∈
ℂ
∧
B
∈
ℂ
→
B
2
∈
ℂ
24
21
23
10
adddird
⊢
A
∈
ℂ
∧
B
∈
ℂ
→
A
2
+
2
A
B
+
B
2
A
=
A
2
+
2
A
B
A
+
B
2
A
25
16
20
10
adddird
⊢
A
∈
ℂ
∧
B
∈
ℂ
→
A
2
+
2
A
B
A
=
A
2
A
+
2
A
B
A
26
1
oveq2i
⊢
A
3
=
A
2
+
1
27
expp1
⊢
A
∈
ℂ
∧
2
∈
ℕ
0
→
A
2
+
1
=
A
2
A
28
10
4
27
sylancl
⊢
A
∈
ℂ
∧
B
∈
ℂ
→
A
2
+
1
=
A
2
A
29
26
28
eqtrid
⊢
A
∈
ℂ
∧
B
∈
ℂ
→
A
3
=
A
2
A
30
sqval
⊢
A
∈
ℂ
→
A
2
=
A
A
31
10
30
syl
⊢
A
∈
ℂ
∧
B
∈
ℂ
→
A
2
=
A
A
32
31
oveq1d
⊢
A
∈
ℂ
∧
B
∈
ℂ
→
A
2
B
=
A
A
B
33
10
10
11
mul32d
⊢
A
∈
ℂ
∧
B
∈
ℂ
→
A
A
B
=
A
B
A
34
32
33
eqtrd
⊢
A
∈
ℂ
∧
B
∈
ℂ
→
A
2
B
=
A
B
A
35
34
oveq2d
⊢
A
∈
ℂ
∧
B
∈
ℂ
→
2
A
2
B
=
2
A
B
A
36
2cnd
⊢
A
∈
ℂ
∧
B
∈
ℂ
→
2
∈
ℂ
37
36
18
10
mulassd
⊢
A
∈
ℂ
∧
B
∈
ℂ
→
2
A
B
A
=
2
A
B
A
38
35
37
eqtr4d
⊢
A
∈
ℂ
∧
B
∈
ℂ
→
2
A
2
B
=
2
A
B
A
39
29
38
oveq12d
⊢
A
∈
ℂ
∧
B
∈
ℂ
→
A
3
+
2
A
2
B
=
A
2
A
+
2
A
B
A
40
25
39
eqtr4d
⊢
A
∈
ℂ
∧
B
∈
ℂ
→
A
2
+
2
A
B
A
=
A
3
+
2
A
2
B
41
23
10
mulcomd
⊢
A
∈
ℂ
∧
B
∈
ℂ
→
B
2
A
=
A
B
2
42
40
41
oveq12d
⊢
A
∈
ℂ
∧
B
∈
ℂ
→
A
2
+
2
A
B
A
+
B
2
A
=
A
3
+
2
A
2
B
+
A
B
2
43
14
24
42
3eqtrd
⊢
A
∈
ℂ
∧
B
∈
ℂ
→
A
+
B
2
A
=
A
3
+
2
A
2
B
+
A
B
2
44
13
oveq1d
⊢
A
∈
ℂ
∧
B
∈
ℂ
→
A
+
B
2
B
=
A
2
+
2
A
B
+
B
2
B
45
21
23
11
adddird
⊢
A
∈
ℂ
∧
B
∈
ℂ
→
A
2
+
2
A
B
+
B
2
B
=
A
2
+
2
A
B
B
+
B
2
B
46
sqval
⊢
B
∈
ℂ
→
B
2
=
B
B
47
11
46
syl
⊢
A
∈
ℂ
∧
B
∈
ℂ
→
B
2
=
B
B
48
47
oveq2d
⊢
A
∈
ℂ
∧
B
∈
ℂ
→
A
B
2
=
A
B
B
49
10
11
11
mulassd
⊢
A
∈
ℂ
∧
B
∈
ℂ
→
A
B
B
=
A
B
B
50
48
49
eqtr4d
⊢
A
∈
ℂ
∧
B
∈
ℂ
→
A
B
2
=
A
B
B
51
50
oveq2d
⊢
A
∈
ℂ
∧
B
∈
ℂ
→
2
A
B
2
=
2
A
B
B
52
36
18
11
mulassd
⊢
A
∈
ℂ
∧
B
∈
ℂ
→
2
A
B
B
=
2
A
B
B
53
51
52
eqtr4d
⊢
A
∈
ℂ
∧
B
∈
ℂ
→
2
A
B
2
=
2
A
B
B
54
53
oveq2d
⊢
A
∈
ℂ
∧
B
∈
ℂ
→
A
2
B
+
2
A
B
2
=
A
2
B
+
2
A
B
B
55
16
20
11
adddird
⊢
A
∈
ℂ
∧
B
∈
ℂ
→
A
2
+
2
A
B
B
=
A
2
B
+
2
A
B
B
56
54
55
eqtr4d
⊢
A
∈
ℂ
∧
B
∈
ℂ
→
A
2
B
+
2
A
B
2
=
A
2
+
2
A
B
B
57
1
oveq2i
⊢
B
3
=
B
2
+
1
58
expp1
⊢
B
∈
ℂ
∧
2
∈
ℕ
0
→
B
2
+
1
=
B
2
B
59
11
4
58
sylancl
⊢
A
∈
ℂ
∧
B
∈
ℂ
→
B
2
+
1
=
B
2
B
60
57
59
eqtrid
⊢
A
∈
ℂ
∧
B
∈
ℂ
→
B
3
=
B
2
B
61
56
60
oveq12d
⊢
A
∈
ℂ
∧
B
∈
ℂ
→
A
2
B
+
2
A
B
2
+
B
3
=
A
2
+
2
A
B
B
+
B
2
B
62
16
11
mulcld
⊢
A
∈
ℂ
∧
B
∈
ℂ
→
A
2
B
∈
ℂ
63
10
23
mulcld
⊢
A
∈
ℂ
∧
B
∈
ℂ
→
A
B
2
∈
ℂ
64
mulcl
⊢
2
∈
ℂ
∧
A
B
2
∈
ℂ
→
2
A
B
2
∈
ℂ
65
17
63
64
sylancr
⊢
A
∈
ℂ
∧
B
∈
ℂ
→
2
A
B
2
∈
ℂ
66
3nn0
⊢
3
∈
ℕ
0
67
expcl
⊢
B
∈
ℂ
∧
3
∈
ℕ
0
→
B
3
∈
ℂ
68
11
66
67
sylancl
⊢
A
∈
ℂ
∧
B
∈
ℂ
→
B
3
∈
ℂ
69
62
65
68
addassd
⊢
A
∈
ℂ
∧
B
∈
ℂ
→
A
2
B
+
2
A
B
2
+
B
3
=
A
2
B
+
2
A
B
2
+
B
3
70
61
69
eqtr3d
⊢
A
∈
ℂ
∧
B
∈
ℂ
→
A
2
+
2
A
B
B
+
B
2
B
=
A
2
B
+
2
A
B
2
+
B
3
71
44
45
70
3eqtrd
⊢
A
∈
ℂ
∧
B
∈
ℂ
→
A
+
B
2
B
=
A
2
B
+
2
A
B
2
+
B
3
72
43
71
oveq12d
⊢
A
∈
ℂ
∧
B
∈
ℂ
→
A
+
B
2
A
+
A
+
B
2
B
=
A
3
+
2
A
2
B
+
A
B
2
+
A
2
B
+
2
A
B
2
+
B
3
73
expcl
⊢
A
∈
ℂ
∧
3
∈
ℕ
0
→
A
3
∈
ℂ
74
10
66
73
sylancl
⊢
A
∈
ℂ
∧
B
∈
ℂ
→
A
3
∈
ℂ
75
mulcl
⊢
2
∈
ℂ
∧
A
2
B
∈
ℂ
→
2
A
2
B
∈
ℂ
76
17
62
75
sylancr
⊢
A
∈
ℂ
∧
B
∈
ℂ
→
2
A
2
B
∈
ℂ
77
74
76
addcld
⊢
A
∈
ℂ
∧
B
∈
ℂ
→
A
3
+
2
A
2
B
∈
ℂ
78
65
68
addcld
⊢
A
∈
ℂ
∧
B
∈
ℂ
→
2
A
B
2
+
B
3
∈
ℂ
79
77
63
62
78
add4d
⊢
A
∈
ℂ
∧
B
∈
ℂ
→
A
3
+
2
A
2
B
+
A
B
2
+
A
2
B
+
2
A
B
2
+
B
3
=
A
3
+
2
A
2
B
+
A
2
B
+
A
B
2
+
2
A
B
2
+
B
3
80
12
72
79
3eqtrd
⊢
A
∈
ℂ
∧
B
∈
ℂ
→
A
+
B
2
A
+
B
=
A
3
+
2
A
2
B
+
A
2
B
+
A
B
2
+
2
A
B
2
+
B
3
81
74
76
62
addassd
⊢
A
∈
ℂ
∧
B
∈
ℂ
→
A
3
+
2
A
2
B
+
A
2
B
=
A
3
+
2
A
2
B
+
A
2
B
82
1
oveq1i
⊢
3
A
2
B
=
2
+
1
A
2
B
83
1cnd
⊢
A
∈
ℂ
∧
B
∈
ℂ
→
1
∈
ℂ
84
36
83
62
adddird
⊢
A
∈
ℂ
∧
B
∈
ℂ
→
2
+
1
A
2
B
=
2
A
2
B
+
1
A
2
B
85
82
84
eqtrid
⊢
A
∈
ℂ
∧
B
∈
ℂ
→
3
A
2
B
=
2
A
2
B
+
1
A
2
B
86
62
mullidd
⊢
A
∈
ℂ
∧
B
∈
ℂ
→
1
A
2
B
=
A
2
B
87
86
oveq2d
⊢
A
∈
ℂ
∧
B
∈
ℂ
→
2
A
2
B
+
1
A
2
B
=
2
A
2
B
+
A
2
B
88
85
87
eqtrd
⊢
A
∈
ℂ
∧
B
∈
ℂ
→
3
A
2
B
=
2
A
2
B
+
A
2
B
89
88
oveq2d
⊢
A
∈
ℂ
∧
B
∈
ℂ
→
A
3
+
3
A
2
B
=
A
3
+
2
A
2
B
+
A
2
B
90
81
89
eqtr4d
⊢
A
∈
ℂ
∧
B
∈
ℂ
→
A
3
+
2
A
2
B
+
A
2
B
=
A
3
+
3
A
2
B
91
1p2e3
⊢
1
+
2
=
3
92
91
oveq1i
⊢
1
+
2
A
B
2
=
3
A
B
2
93
83
36
63
adddird
⊢
A
∈
ℂ
∧
B
∈
ℂ
→
1
+
2
A
B
2
=
1
A
B
2
+
2
A
B
2
94
92
93
eqtr3id
⊢
A
∈
ℂ
∧
B
∈
ℂ
→
3
A
B
2
=
1
A
B
2
+
2
A
B
2
95
63
mullidd
⊢
A
∈
ℂ
∧
B
∈
ℂ
→
1
A
B
2
=
A
B
2
96
95
oveq1d
⊢
A
∈
ℂ
∧
B
∈
ℂ
→
1
A
B
2
+
2
A
B
2
=
A
B
2
+
2
A
B
2
97
94
96
eqtrd
⊢
A
∈
ℂ
∧
B
∈
ℂ
→
3
A
B
2
=
A
B
2
+
2
A
B
2
98
97
oveq1d
⊢
A
∈
ℂ
∧
B
∈
ℂ
→
3
A
B
2
+
B
3
=
A
B
2
+
2
A
B
2
+
B
3
99
63
65
68
addassd
⊢
A
∈
ℂ
∧
B
∈
ℂ
→
A
B
2
+
2
A
B
2
+
B
3
=
A
B
2
+
2
A
B
2
+
B
3
100
98
99
eqtr2d
⊢
A
∈
ℂ
∧
B
∈
ℂ
→
A
B
2
+
2
A
B
2
+
B
3
=
3
A
B
2
+
B
3
101
90
100
oveq12d
⊢
A
∈
ℂ
∧
B
∈
ℂ
→
A
3
+
2
A
2
B
+
A
2
B
+
A
B
2
+
2
A
B
2
+
B
3
=
A
3
+
3
A
2
B
+
3
A
B
2
+
B
3
102
7
80
101
3eqtrd
⊢
A
∈
ℂ
∧
B
∈
ℂ
→
A
+
B
3
=
A
3
+
3
A
2
B
+
3
A
B
2
+
B
3