Metamath Proof Explorer


Theorem binom4

Description: Work out a quartic binomial. (You would think that by this point it would be faster to use binom , but it turns out to be just as much work to put it into this form after clearing all the sums and calculating binomial coefficients.) (Contributed by Mario Carneiro, 6-May-2015)

Ref Expression
Assertion binom4 ABA+B4=A4+4A3B+6A2B2+4AB3+B4

Proof

Step Hyp Ref Expression
1 df-4 4=3+1
2 1 oveq2i A+B4=A+B3+1
3 addcl ABA+B
4 3nn0 30
5 expp1 A+B30A+B3+1=A+B3A+B
6 3 4 5 sylancl ABA+B3+1=A+B3A+B
7 2 6 eqtrid ABA+B4=A+B3A+B
8 binom3 ABA+B3=A3+3A2B+3AB2+B3
9 8 oveq1d ABA+B3A+B=A3+3A2B+3AB2+B3A+B
10 simpl ABA
11 expcl A30A3
12 10 4 11 sylancl ABA3
13 3cn 3
14 10 sqcld ABA2
15 simpr ABB
16 14 15 mulcld ABA2B
17 mulcl 3A2B3A2B
18 13 16 17 sylancr AB3A2B
19 12 18 addcld ABA3+3A2B
20 15 sqcld ABB2
21 10 20 mulcld ABAB2
22 mulcl 3AB23AB2
23 13 21 22 sylancr AB3AB2
24 expcl B30B3
25 15 4 24 sylancl ABB3
26 23 25 addcld AB3AB2+B3
27 19 26 addcld ABA3+3A2B+3AB2+B3
28 27 10 15 adddid ABA3+3A2B+3AB2+B3A+B=A3+3A2B+3AB2+B3A+A3+3A2B+3AB2+B3B
29 1 oveq2i A4=A3+1
30 expp1 A30A3+1=A3A
31 10 4 30 sylancl ABA3+1=A3A
32 29 31 eqtr2id ABA3A=A4
33 13 a1i AB3
34 33 16 10 mulassd AB3A2BA=3A2BA
35 14 15 10 mul32d ABA2BA=A2AB
36 df-3 3=2+1
37 36 oveq2i A3=A2+1
38 2nn0 20
39 expp1 A20A2+1=A2A
40 10 38 39 sylancl ABA2+1=A2A
41 37 40 eqtr2id ABA2A=A3
42 41 oveq1d ABA2AB=A3B
43 35 42 eqtrd ABA2BA=A3B
44 43 oveq2d AB3A2BA=3A3B
45 34 44 eqtrd AB3A2BA=3A3B
46 32 45 oveq12d ABA3A+3A2BA=A4+3A3B
47 12 10 18 46 joinlmuladdmuld ABA3+3A2BA=A4+3A3B
48 33 21 10 mulassd AB3AB2A=3AB2A
49 10 20 10 mul32d ABAB2A=AAB2
50 10 sqvald ABA2=AA
51 50 oveq1d ABA2B2=AAB2
52 49 51 eqtr4d ABAB2A=A2B2
53 52 oveq2d AB3AB2A=3A2B2
54 48 53 eqtrd AB3AB2A=3A2B2
55 25 10 mulcomd ABB3A=AB3
56 54 55 oveq12d AB3AB2A+B3A=3A2B2+AB3
57 23 10 25 56 joinlmuladdmuld AB3AB2+B3A=3A2B2+AB3
58 47 57 oveq12d ABA3+3A2BA+3AB2+B3A=A4+3A3B+3A2B2+AB3
59 19 10 26 58 joinlmuladdmuld ABA3+3A2B+3AB2+B3A=A4+3A3B+3A2B2+AB3
60 19 26 15 adddird ABA3+3A2B+3AB2+B3B=A3+3A2BB+3AB2+B3B
61 33 16 15 mulassd AB3A2BB=3A2BB
62 14 15 15 mulassd ABA2BB=A2BB
63 15 sqvald ABB2=BB
64 63 oveq2d ABA2B2=A2BB
65 62 64 eqtr4d ABA2BB=A2B2
66 65 oveq2d AB3A2BB=3A2B2
67 61 66 eqtrd AB3A2BB=3A2B2
68 67 oveq2d ABA3B+3A2BB=A3B+3A2B2
69 12 15 18 68 joinlmuladdmuld ABA3+3A2BB=A3B+3A2B2
70 33 21 15 mulassd AB3AB2B=3AB2B
71 10 20 15 mulassd ABAB2B=AB2B
72 36 oveq2i B3=B2+1
73 expp1 B20B2+1=B2B
74 15 38 73 sylancl ABB2+1=B2B
75 72 74 eqtr2id ABB2B=B3
76 75 oveq2d ABAB2B=AB3
77 71 76 eqtrd ABAB2B=AB3
78 77 oveq2d AB3AB2B=3AB3
79 70 78 eqtrd AB3AB2B=3AB3
80 1 oveq2i B4=B3+1
81 expp1 B30B3+1=B3B
82 15 4 81 sylancl ABB3+1=B3B
83 80 82 eqtr2id ABB3B=B4
84 79 83 oveq12d AB3AB2B+B3B=3AB3+B4
85 23 15 25 84 joinlmuladdmuld AB3AB2+B3B=3AB3+B4
86 69 85 oveq12d ABA3+3A2BB+3AB2+B3B=A3B+3A2B2+3AB3+B4
87 12 15 mulcld ABA3B
88 14 20 mulcld ABA2B2
89 mulcl 3A2B23A2B2
90 13 88 89 sylancr AB3A2B2
91 10 25 mulcld ABAB3
92 mulcl 3AB33AB3
93 13 91 92 sylancr AB3AB3
94 4nn0 40
95 expcl B40B4
96 15 94 95 sylancl ABB4
97 93 96 addcld AB3AB3+B4
98 87 90 97 addassd ABA3B+3A2B2+3AB3+B4=A3B+3A2B2+3AB3+B4
99 60 86 98 3eqtrd ABA3+3A2B+3AB2+B3B=A3B+3A2B2+3AB3+B4
100 59 99 oveq12d ABA3+3A2B+3AB2+B3A+A3+3A2B+3AB2+B3B=A4+3A3B+3A2B2+AB3+A3B+3A2B2+3AB3+B4
101 expcl A40A4
102 10 94 101 sylancl ABA4
103 mulcl 3A3B3A3B
104 13 87 103 sylancr AB3A3B
105 102 104 addcld ABA4+3A3B
106 90 91 addcld AB3A2B2+AB3
107 90 97 addcld AB3A2B2+3AB3+B4
108 105 106 87 107 add4d ABA4+3A3B+3A2B2+AB3+A3B+3A2B2+3AB3+B4=A4+3A3B+A3B+3A2B2+AB3+3A2B2+3AB3+B4
109 102 104 87 addassd ABA4+3A3B+A3B=A4+3A3B+A3B
110 1 oveq1i 4A3B=3+1A3B
111 ax-1cn 1
112 111 a1i AB1
113 33 112 87 adddird AB3+1A3B=3A3B+1A3B
114 110 113 eqtrid AB4A3B=3A3B+1A3B
115 87 mullidd AB1A3B=A3B
116 115 oveq2d AB3A3B+1A3B=3A3B+A3B
117 114 116 eqtrd AB4A3B=3A3B+A3B
118 117 oveq2d ABA4+4A3B=A4+3A3B+A3B
119 109 118 eqtr4d ABA4+3A3B+A3B=A4+4A3B
120 90 91 90 97 add4d AB3A2B2+AB3+3A2B2+3AB3+B4=3A2B2+3A2B2+AB3+3AB3+B4
121 3p3e6 3+3=6
122 121 oveq1i 3+3A2B2=6A2B2
123 33 33 88 adddird AB3+3A2B2=3A2B2+3A2B2
124 122 123 eqtr3id AB6A2B2=3A2B2+3A2B2
125 3p1e4 3+1=4
126 13 111 125 addcomli 1+3=4
127 126 oveq1i 1+3AB3=4AB3
128 112 33 91 adddird AB1+3AB3=1AB3+3AB3
129 127 128 eqtr3id AB4AB3=1AB3+3AB3
130 91 mullidd AB1AB3=AB3
131 130 oveq1d AB1AB3+3AB3=AB3+3AB3
132 129 131 eqtrd AB4AB3=AB3+3AB3
133 132 oveq1d AB4AB3+B4=AB3+3AB3+B4
134 91 93 96 addassd ABAB3+3AB3+B4=AB3+3AB3+B4
135 133 134 eqtrd AB4AB3+B4=AB3+3AB3+B4
136 124 135 oveq12d AB6A2B2+4AB3+B4=3A2B2+3A2B2+AB3+3AB3+B4
137 120 136 eqtr4d AB3A2B2+AB3+3A2B2+3AB3+B4=6A2B2+4AB3+B4
138 119 137 oveq12d ABA4+3A3B+A3B+3A2B2+AB3+3A2B2+3AB3+B4=A4+4A3B+6A2B2+4AB3+B4
139 108 138 eqtrd ABA4+3A3B+3A2B2+AB3+A3B+3A2B2+3AB3+B4=A4+4A3B+6A2B2+4AB3+B4
140 28 100 139 3eqtrd ABA3+3A2B+3AB2+B3A+B=A4+4A3B+6A2B2+4AB3+B4
141 7 9 140 3eqtrd ABA+B4=A4+4A3B+6A2B2+4AB3+B4