Metamath Proof Explorer


Theorem blennnt2

Description: The binary length of a positive integer, doubled and increased by 1, is the binary length of the integer plus 1. (Contributed by AV, 30-May-2010)

Ref Expression
Assertion blennnt2 N#b 2 N = #b N+1

Proof

Step Hyp Ref Expression
1 2nn 2
2 1 a1i N2
3 id NN
4 2 3 nnmulcld N2 N
5 blennn 2 N#b 2 N = log22 N+1
6 4 5 syl N#b 2 N = log22 N+1
7 2cn 2
8 7 a1i N2
9 nncn NN
10 8 9 mulcomd N2 N= N2
11 10 oveq2d Nlog22 N=log2 N2
12 2z 2
13 uzid 222
14 12 13 ax-mp 22
15 eluz2cnn0n1 22201
16 14 15 mp1i N201
17 nnrp NN+
18 2rp 2+
19 18 a1i N2+
20 relogbmul 201N+2+log2 N2=log2N+log22
21 16 17 19 20 syl12anc Nlog2 N2=log2N+log22
22 2ne0 20
23 1ne2 12
24 23 necomi 21
25 7 22 24 3pm3.2i 22021
26 logbid1 22021log22=1
27 25 26 mp1i Nlog22=1
28 27 oveq2d Nlog2N+log22=log2N+1
29 11 21 28 3eqtrd Nlog22 N=log2N+1
30 29 fveq2d Nlog22 N=log2N+1
31 24 a1i N21
32 relogbcl 2+N+21log2N
33 19 17 31 32 syl3anc Nlog2N
34 1zzd N1
35 fladdz log2N1log2N+1=log2N+1
36 33 34 35 syl2anc Nlog2N+1=log2N+1
37 30 36 eqtrd Nlog22 N=log2N+1
38 37 oveq1d Nlog22 N+1=log2N+1+1
39 blennn N#b N = log2N+1
40 39 eqcomd Nlog2N+1=#b N
41 40 oveq1d Nlog2N+1+1=#b N + 1
42 6 38 41 3eqtrd N#b 2 N = #b N+1