Metamath Proof Explorer


Theorem brecop

Description: Binary relation on a quotient set. Lemma for real number construction. (Contributed by NM, 29-Jan-1996)

Ref Expression
Hypotheses brecop.1 ˙V
brecop.2 ˙ErG×G
brecop.4 H=G×G/˙
brecop.5 ˙=xy|xHyHzwvux=zw˙y=vu˙φ
brecop.6 zGwGAGBGvGuGCGDGzw˙=AB˙vu˙=CD˙φψ
Assertion brecop AGBGCGDGAB˙˙CD˙ψ

Proof

Step Hyp Ref Expression
1 brecop.1 ˙V
2 brecop.2 ˙ErG×G
3 brecop.4 H=G×G/˙
4 brecop.5 ˙=xy|xHyHzwvux=zw˙y=vu˙φ
5 brecop.6 zGwGAGBGvGuGCGDGzw˙=AB˙vu˙=CD˙φψ
6 1 3 ecopqsi AGBGAB˙H
7 1 3 ecopqsi CGDGCD˙H
8 df-br AB˙˙CD˙AB˙CD˙˙
9 4 eleq2i AB˙CD˙˙AB˙CD˙xy|xHyHzwvux=zw˙y=vu˙φ
10 8 9 bitri AB˙˙CD˙AB˙CD˙xy|xHyHzwvux=zw˙y=vu˙φ
11 eqeq1 x=AB˙x=zw˙AB˙=zw˙
12 11 anbi1d x=AB˙x=zw˙y=vu˙AB˙=zw˙y=vu˙
13 12 anbi1d x=AB˙x=zw˙y=vu˙φAB˙=zw˙y=vu˙φ
14 13 4exbidv x=AB˙zwvux=zw˙y=vu˙φzwvuAB˙=zw˙y=vu˙φ
15 eqeq1 y=CD˙y=vu˙CD˙=vu˙
16 15 anbi2d y=CD˙AB˙=zw˙y=vu˙AB˙=zw˙CD˙=vu˙
17 16 anbi1d y=CD˙AB˙=zw˙y=vu˙φAB˙=zw˙CD˙=vu˙φ
18 17 4exbidv y=CD˙zwvuAB˙=zw˙y=vu˙φzwvuAB˙=zw˙CD˙=vu˙φ
19 14 18 opelopab2 AB˙HCD˙HAB˙CD˙xy|xHyHzwvux=zw˙y=vu˙φzwvuAB˙=zw˙CD˙=vu˙φ
20 10 19 bitrid AB˙HCD˙HAB˙˙CD˙zwvuAB˙=zw˙CD˙=vu˙φ
21 6 7 20 syl2an AGBGCGDGAB˙˙CD˙zwvuAB˙=zw˙CD˙=vu˙φ
22 opeq12 z=Aw=Bzw=AB
23 22 eceq1d z=Aw=Bzw˙=AB˙
24 opeq12 v=Cu=Dvu=CD
25 24 eceq1d v=Cu=Dvu˙=CD˙
26 23 25 anim12i z=Aw=Bv=Cu=Dzw˙=AB˙vu˙=CD˙
27 opelxpi AGBGABG×G
28 opelxp zwG×GzGwG
29 2 a1i zw˙=AB˙˙ErG×G
30 id zw˙=AB˙zw˙=AB˙
31 29 30 ereldm zw˙=AB˙zwG×GABG×G
32 28 31 bitr3id zw˙=AB˙zGwGABG×G
33 27 32 imbitrrid zw˙=AB˙AGBGzGwG
34 opelxpi CGDGCDG×G
35 opelxp vuG×GvGuG
36 2 a1i vu˙=CD˙˙ErG×G
37 id vu˙=CD˙vu˙=CD˙
38 36 37 ereldm vu˙=CD˙vuG×GCDG×G
39 35 38 bitr3id vu˙=CD˙vGuGCDG×G
40 34 39 imbitrrid vu˙=CD˙CGDGvGuG
41 33 40 im2anan9 zw˙=AB˙vu˙=CD˙AGBGCGDGzGwGvGuG
42 5 an4s zGwGvGuGAGBGCGDGzw˙=AB˙vu˙=CD˙φψ
43 42 ex zGwGvGuGAGBGCGDGzw˙=AB˙vu˙=CD˙φψ
44 43 com13 zw˙=AB˙vu˙=CD˙AGBGCGDGzGwGvGuGφψ
45 41 44 mpdd zw˙=AB˙vu˙=CD˙AGBGCGDGφψ
46 45 pm5.74d zw˙=AB˙vu˙=CD˙AGBGCGDGφAGBGCGDGψ
47 26 46 cgsex4g AGBGCGDGzwvuzw˙=AB˙vu˙=CD˙AGBGCGDGφAGBGCGDGψ
48 eqcom AB˙=zw˙zw˙=AB˙
49 eqcom CD˙=vu˙vu˙=CD˙
50 48 49 anbi12i AB˙=zw˙CD˙=vu˙zw˙=AB˙vu˙=CD˙
51 50 a1i AGBGCGDGAB˙=zw˙CD˙=vu˙zw˙=AB˙vu˙=CD˙
52 biimt AGBGCGDGφAGBGCGDGφ
53 51 52 anbi12d AGBGCGDGAB˙=zw˙CD˙=vu˙φzw˙=AB˙vu˙=CD˙AGBGCGDGφ
54 53 4exbidv AGBGCGDGzwvuAB˙=zw˙CD˙=vu˙φzwvuzw˙=AB˙vu˙=CD˙AGBGCGDGφ
55 biimt AGBGCGDGψAGBGCGDGψ
56 47 54 55 3bitr4d AGBGCGDGzwvuAB˙=zw˙CD˙=vu˙φψ
57 21 56 bitrd AGBGCGDGAB˙˙CD˙ψ