Description: Binary relation on a quotient set. Lemma for real number construction. (Contributed by NM, 29-Jan-1996)
Ref | Expression | ||
---|---|---|---|
Hypotheses | brecop.1 | |
|
brecop.2 | |
||
brecop.4 | |
||
brecop.5 | |
||
brecop.6 | |
||
Assertion | brecop | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brecop.1 | |
|
2 | brecop.2 | |
|
3 | brecop.4 | |
|
4 | brecop.5 | |
|
5 | brecop.6 | |
|
6 | 1 3 | ecopqsi | |
7 | 1 3 | ecopqsi | |
8 | df-br | |
|
9 | 4 | eleq2i | |
10 | 8 9 | bitri | |
11 | eqeq1 | |
|
12 | 11 | anbi1d | |
13 | 12 | anbi1d | |
14 | 13 | 4exbidv | |
15 | eqeq1 | |
|
16 | 15 | anbi2d | |
17 | 16 | anbi1d | |
18 | 17 | 4exbidv | |
19 | 14 18 | opelopab2 | |
20 | 10 19 | bitrid | |
21 | 6 7 20 | syl2an | |
22 | opeq12 | |
|
23 | 22 | eceq1d | |
24 | opeq12 | |
|
25 | 24 | eceq1d | |
26 | 23 25 | anim12i | |
27 | opelxpi | |
|
28 | opelxp | |
|
29 | 2 | a1i | |
30 | id | |
|
31 | 29 30 | ereldm | |
32 | 28 31 | bitr3id | |
33 | 27 32 | imbitrrid | |
34 | opelxpi | |
|
35 | opelxp | |
|
36 | 2 | a1i | |
37 | id | |
|
38 | 36 37 | ereldm | |
39 | 35 38 | bitr3id | |
40 | 34 39 | imbitrrid | |
41 | 33 40 | im2anan9 | |
42 | 5 | an4s | |
43 | 42 | ex | |
44 | 43 | com13 | |
45 | 41 44 | mpdd | |
46 | 45 | pm5.74d | |
47 | 26 46 | cgsex4g | |
48 | eqcom | |
|
49 | eqcom | |
|
50 | 48 49 | anbi12i | |
51 | 50 | a1i | |
52 | biimt | |
|
53 | 51 52 | anbi12d | |
54 | 53 | 4exbidv | |
55 | biimt | |
|
56 | 47 54 55 | 3bitr4d | |
57 | 21 56 | bitrd | |