Description: 'almost everywhere' relation for two functions F and G with regard to the measure M . (Contributed by Thierry Arnoux, 22-Oct-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | brfae.0 | |
|
brfae.1 | |
||
brfae.2 | |
||
brfae.3 | |
||
brfae.4 | |
||
Assertion | brfae | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brfae.0 | |
|
2 | brfae.1 | |
|
3 | brfae.2 | |
|
4 | brfae.3 | |
|
5 | brfae.4 | |
|
6 | simpl | |
|
7 | 6 | eleq1d | |
8 | simpr | |
|
9 | 8 | eleq1d | |
10 | 7 9 | anbi12d | |
11 | 6 | fveq1d | |
12 | 8 | fveq1d | |
13 | 11 12 | breq12d | |
14 | 13 | rabbidv | |
15 | 14 | breq1d | |
16 | 10 15 | anbi12d | |
17 | eqid | |
|
18 | 16 17 | brabga | |
19 | 4 5 18 | syl2anc | |
20 | faeval | |
|
21 | 2 3 20 | syl2anc | |
22 | 21 | breqd | |
23 | 1 | oveq1i | |
24 | 4 23 | eleqtrrdi | |
25 | 5 23 | eleqtrrdi | |
26 | 24 25 | jca | |
27 | 26 | biantrurd | |
28 | 19 22 27 | 3bitr4d | |