Metamath Proof Explorer


Theorem btwnconn1lem7

Description: Lemma for btwnconn1 . Under our assumptions, C and d are distinct. (Contributed by Scott Fenton, 8-Oct-2013)

Ref Expression
Assertion btwnconn1lem7 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B E Btwn C c E Btwn D d C d

Proof

Step Hyp Ref Expression
1 simp1l3 A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B C c
2 1 adantr A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B E Btwn C c E Btwn D d C c
3 simp2rr A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B C d Cgr C D
4 3 adantr A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B E Btwn C c E Btwn D d C d Cgr C D
5 simp2lr A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B D c Cgr C D
6 5 adantr A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B E Btwn C c E Btwn D d D c Cgr C D
7 2 4 6 3jca A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B E Btwn C c E Btwn D d C c C d Cgr C D D c Cgr C D
8 simp11 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N N
9 simp21 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N C 𝔼 N
10 simp22 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N D 𝔼 N
11 simp23 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N c 𝔼 N
12 simp31 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N d 𝔼 N
13 simpr1 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N C c C d Cgr C D D c Cgr C D C c
14 opeq2 C = d C C = C d
15 14 breq1d C = d C C Cgr C D C d Cgr C D
16 15 3anbi2d C = d C c C C Cgr C D D c Cgr C D C c C d Cgr C D D c Cgr C D
17 16 biimparc C c C d Cgr C D D c Cgr C D C = d C c C C Cgr C D D c Cgr C D
18 simp2 C c C C Cgr C D D c Cgr C D C C Cgr C D
19 simp1 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N N
20 simp2l N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N C 𝔼 N
21 simp2r N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N D 𝔼 N
22 cgrid2 N C 𝔼 N C 𝔼 N D 𝔼 N C C Cgr C D C = D
23 19 20 20 21 22 syl13anc N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N C C Cgr C D C = D
24 18 23 syl5 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N C c C C Cgr C D D c Cgr C D C = D
25 24 imp N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N C c C C Cgr C D D c Cgr C D C = D
26 opeq1 C = D C c = D c
27 opeq2 C = D C C = C D
28 26 27 breq12d C = D C c Cgr C C D c Cgr C D
29 28 biimparc D c Cgr C D C = D C c Cgr C C
30 simp3l N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N c 𝔼 N
31 axcgrid N C 𝔼 N c 𝔼 N C 𝔼 N C c Cgr C C C = c
32 19 20 30 20 31 syl13anc N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N C c Cgr C C C = c
33 29 32 syl5 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N D c Cgr C D C = D C = c
34 33 expdimp N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N D c Cgr C D C = D C = c
35 34 3ad2antr3 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N C c C C Cgr C D D c Cgr C D C = D C = c
36 25 35 mpd N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N C c C C Cgr C D D c Cgr C D C = c
37 36 ex N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N C c C C Cgr C D D c Cgr C D C = c
38 17 37 syl5 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N C c C d Cgr C D D c Cgr C D C = d C = c
39 38 expdimp N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N C c C d Cgr C D D c Cgr C D C = d C = c
40 39 necon3d N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N C c C d Cgr C D D c Cgr C D C c C d
41 13 40 mpd N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N C c C d Cgr C D D c Cgr C D C d
42 41 ex N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N C c C d Cgr C D D c Cgr C D C d
43 8 9 10 11 12 42 syl122anc N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N C c C d Cgr C D D c Cgr C D C d
44 7 43 syl5 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B E Btwn C c E Btwn D d C d
45 44 imp N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B E Btwn C c E Btwn D d C d