| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simp1l3 |  | 
						
							| 2 | 1 | adantr |  | 
						
							| 3 |  | simp2rr |  | 
						
							| 4 | 3 | adantr |  | 
						
							| 5 |  | simp2lr |  | 
						
							| 6 | 5 | adantr |  | 
						
							| 7 | 2 4 6 | 3jca |  | 
						
							| 8 |  | simp11 |  | 
						
							| 9 |  | simp21 |  | 
						
							| 10 |  | simp22 |  | 
						
							| 11 |  | simp23 |  | 
						
							| 12 |  | simp31 |  | 
						
							| 13 |  | simpr1 |  | 
						
							| 14 |  | opeq2 |  | 
						
							| 15 | 14 | breq1d |  | 
						
							| 16 | 15 | 3anbi2d |  | 
						
							| 17 | 16 | biimparc |  | 
						
							| 18 |  | simp2 |  | 
						
							| 19 |  | simp1 |  | 
						
							| 20 |  | simp2l |  | 
						
							| 21 |  | simp2r |  | 
						
							| 22 |  | cgrid2 |  | 
						
							| 23 | 19 20 20 21 22 | syl13anc |  | 
						
							| 24 | 18 23 | syl5 |  | 
						
							| 25 | 24 | imp |  | 
						
							| 26 |  | opeq1 |  | 
						
							| 27 |  | opeq2 |  | 
						
							| 28 | 26 27 | breq12d |  | 
						
							| 29 | 28 | biimparc |  | 
						
							| 30 |  | simp3l |  | 
						
							| 31 |  | axcgrid |  | 
						
							| 32 | 19 20 30 20 31 | syl13anc |  | 
						
							| 33 | 29 32 | syl5 |  | 
						
							| 34 | 33 | expdimp |  | 
						
							| 35 | 34 | 3ad2antr3 |  | 
						
							| 36 | 25 35 | mpd |  | 
						
							| 37 | 36 | ex |  | 
						
							| 38 | 17 37 | syl5 |  | 
						
							| 39 | 38 | expdimp |  | 
						
							| 40 | 39 | necon3d |  | 
						
							| 41 | 13 40 | mpd |  | 
						
							| 42 | 41 | ex |  | 
						
							| 43 | 8 9 10 11 12 42 | syl122anc |  | 
						
							| 44 | 7 43 | syl5 |  | 
						
							| 45 | 44 | imp |  |