| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cantnfs.s |  | 
						
							| 2 |  | cantnfs.a |  | 
						
							| 3 |  | cantnfs.b |  | 
						
							| 4 |  | oemapval.t |  | 
						
							| 5 |  | oemapval.f |  | 
						
							| 6 |  | oemapval.g |  | 
						
							| 7 |  | oemapvali.r |  | 
						
							| 8 |  | oemapvali.x |  | 
						
							| 9 |  | cantnflem1.o |  | 
						
							| 10 | 3 | ad3antrrr |  | 
						
							| 11 |  | simplr |  | 
						
							| 12 | 1 2 3 | cantnfs |  | 
						
							| 13 | 6 12 | mpbid |  | 
						
							| 14 | 13 | simpld |  | 
						
							| 15 | 14 | ffnd |  | 
						
							| 16 | 15 | ad3antrrr |  | 
						
							| 17 | 1 2 3 4 5 6 7 8 9 | cantnflem1b |  | 
						
							| 18 | 17 | ad2antrr |  | 
						
							| 19 |  | simprr |  | 
						
							| 20 | 1 2 3 4 5 6 7 8 | oemapvali |  | 
						
							| 21 | 20 | simp1d |  | 
						
							| 22 |  | onelon |  | 
						
							| 23 | 3 21 22 | syl2anc |  | 
						
							| 24 | 23 | ad3antrrr |  | 
						
							| 25 |  | onss |  | 
						
							| 26 | 3 25 | syl |  | 
						
							| 27 | 26 | sselda |  | 
						
							| 28 | 27 | ad4ant13 |  | 
						
							| 29 |  | ontr2 |  | 
						
							| 30 | 24 28 29 | syl2anc |  | 
						
							| 31 | 18 19 30 | mp2and |  | 
						
							| 32 |  | eleq2w |  | 
						
							| 33 |  | fveq2 |  | 
						
							| 34 |  | fveq2 |  | 
						
							| 35 | 33 34 | eqeq12d |  | 
						
							| 36 | 32 35 | imbi12d |  | 
						
							| 37 | 20 | simp3d |  | 
						
							| 38 | 37 | ad3antrrr |  | 
						
							| 39 | 36 38 11 | rspcdva |  | 
						
							| 40 | 31 39 | mpd |  | 
						
							| 41 |  | simprl |  | 
						
							| 42 | 40 41 | eqnetrrd |  | 
						
							| 43 |  | fvn0elsupp |  | 
						
							| 44 | 10 11 16 42 43 | syl22anc |  |