Metamath Proof Explorer


Theorem cantnflem1d

Description: Lemma for cantnf . (Contributed by Mario Carneiro, 4-Jun-2015) (Revised by AV, 2-Jul-2019)

Ref Expression
Hypotheses cantnfs.s S = dom A CNF B
cantnfs.a φ A On
cantnfs.b φ B On
oemapval.t T = x y | z B x z y z w B z w x w = y w
oemapval.f φ F S
oemapval.g φ G S
oemapvali.r φ F T G
oemapvali.x X = c B | F c G c
cantnflem1.o O = OrdIso E G supp
cantnflem1.h H = seq ω k V , z V A 𝑜 O k 𝑜 G O k + 𝑜 z
Assertion cantnflem1d φ A CNF B x B if x X F x H suc O -1 X

Proof

Step Hyp Ref Expression
1 cantnfs.s S = dom A CNF B
2 cantnfs.a φ A On
3 cantnfs.b φ B On
4 oemapval.t T = x y | z B x z y z w B z w x w = y w
5 oemapval.f φ F S
6 oemapval.g φ G S
7 oemapvali.r φ F T G
8 oemapvali.x X = c B | F c G c
9 cantnflem1.o O = OrdIso E G supp
10 cantnflem1.h H = seq ω k V , z V A 𝑜 O k 𝑜 G O k + 𝑜 z
11 1 2 3 4 5 6 7 8 oemapvali φ X B F X G X w B X w F w = G w
12 11 simp1d φ X B
13 onelon B On X B X On
14 3 12 13 syl2anc φ X On
15 oecl A On X On A 𝑜 X On
16 2 14 15 syl2anc φ A 𝑜 X On
17 1 2 3 cantnfs φ G S G : B A finSupp G
18 6 17 mpbid φ G : B A finSupp G
19 18 simpld φ G : B A
20 19 12 ffvelrnd φ G X A
21 onelon A On G X A G X On
22 2 20 21 syl2anc φ G X On
23 omcl A 𝑜 X On G X On A 𝑜 X 𝑜 G X On
24 16 22 23 syl2anc φ A 𝑜 X 𝑜 G X On
25 ovexd φ G supp V
26 1 2 3 9 6 cantnfcl φ E We supp G dom O ω
27 26 simpld φ E We supp G
28 9 oiiso G supp V E We supp G O Isom E , E dom O G supp
29 25 27 28 syl2anc φ O Isom E , E dom O G supp
30 isof1o O Isom E , E dom O G supp O : dom O 1-1 onto G supp
31 29 30 syl φ O : dom O 1-1 onto G supp
32 f1ocnv O : dom O 1-1 onto G supp O -1 : G supp 1-1 onto dom O
33 f1of O -1 : G supp 1-1 onto dom O O -1 : G supp dom O
34 31 32 33 3syl φ O -1 : G supp dom O
35 1 2 3 4 5 6 7 8 cantnflem1a φ X supp G
36 34 35 ffvelrnd φ O -1 X dom O
37 26 simprd φ dom O ω
38 elnn O -1 X dom O dom O ω O -1 X ω
39 36 37 38 syl2anc φ O -1 X ω
40 10 cantnfvalf H : ω On
41 40 ffvelrni O -1 X ω H O -1 X On
42 39 41 syl φ H O -1 X On
43 oaword1 A 𝑜 X 𝑜 G X On H O -1 X On A 𝑜 X 𝑜 G X A 𝑜 X 𝑜 G X + 𝑜 H O -1 X
44 24 42 43 syl2anc φ A 𝑜 X 𝑜 G X A 𝑜 X 𝑜 G X + 𝑜 H O -1 X
45 1 2 3 9 6 10 cantnfsuc φ O -1 X ω H suc O -1 X = A 𝑜 O O -1 X 𝑜 G O O -1 X + 𝑜 H O -1 X
46 39 45 mpdan φ H suc O -1 X = A 𝑜 O O -1 X 𝑜 G O O -1 X + 𝑜 H O -1 X
47 f1ocnvfv2 O : dom O 1-1 onto G supp X supp G O O -1 X = X
48 31 35 47 syl2anc φ O O -1 X = X
49 48 oveq2d φ A 𝑜 O O -1 X = A 𝑜 X
50 48 fveq2d φ G O O -1 X = G X
51 49 50 oveq12d φ A 𝑜 O O -1 X 𝑜 G O O -1 X = A 𝑜 X 𝑜 G X
52 51 oveq1d φ A 𝑜 O O -1 X 𝑜 G O O -1 X + 𝑜 H O -1 X = A 𝑜 X 𝑜 G X + 𝑜 H O -1 X
53 46 52 eqtrd φ H suc O -1 X = A 𝑜 X 𝑜 G X + 𝑜 H O -1 X
54 44 53 sseqtrrd φ A 𝑜 X 𝑜 G X H suc O -1 X
55 onss B On B On
56 3 55 syl φ B On
57 56 sselda φ x B x On
58 14 adantr φ x B X On
59 onsseleq x On X On x X x X x = X
60 57 58 59 syl2anc φ x B x X x X x = X
61 orcom x X x = X x = X x X
62 60 61 bitrdi φ x B x X x = X x X
63 62 ifbid φ x B if x X F x = if x = X x X F x
64 63 mpteq2dva φ x B if x X F x = x B if x = X x X F x
65 64 fveq2d φ A CNF B x B if x X F x = A CNF B x B if x = X x X F x
66 1 2 3 cantnfs φ F S F : B A finSupp F
67 5 66 mpbid φ F : B A finSupp F
68 67 simpld φ F : B A
69 68 ffvelrnda φ y B F y A
70 20 ne0d φ A
71 on0eln0 A On A A
72 2 71 syl φ A A
73 70 72 mpbird φ A
74 73 adantr φ y B A
75 69 74 ifcld φ y B if y X F y A
76 75 fmpttd φ y B if y X F y : B A
77 0ex V
78 77 a1i φ V
79 67 simprd φ finSupp F
80 68 3 78 79 fsuppmptif φ finSupp y B if y X F y
81 1 2 3 cantnfs φ y B if y X F y S y B if y X F y : B A finSupp y B if y X F y
82 76 80 81 mpbir2and φ y B if y X F y S
83 68 12 ffvelrnd φ F X A
84 eldifn y B X ¬ y X
85 84 adantl φ y B X ¬ y X
86 85 iffalsed φ y B X if y X F y =
87 86 3 suppss2 φ y B if y X F y supp X
88 ifor if x = X x X F x = if x = X F x if x X F x
89 fveq2 x = X F x = F X
90 89 adantl x B x = X F x = F X
91 90 ifeq1da x B if x = X F x y B if y X F y x = if x = X F X y B if y X F y x
92 eleq1w y = x y X x X
93 fveq2 y = x F y = F x
94 92 93 ifbieq1d y = x if y X F y = if x X F x
95 eqid y B if y X F y = y B if y X F y
96 fvex F x V
97 96 77 ifex if x X F x V
98 94 95 97 fvmpt x B y B if y X F y x = if x X F x
99 98 ifeq2d x B if x = X F x y B if y X F y x = if x = X F x if x X F x
100 91 99 eqtr3d x B if x = X F X y B if y X F y x = if x = X F x if x X F x
101 88 100 eqtr4id x B if x = X x X F x = if x = X F X y B if y X F y x
102 101 mpteq2ia x B if x = X x X F x = x B if x = X F X y B if y X F y x
103 1 2 3 82 12 83 87 102 cantnfp1 φ x B if x = X x X F x S A CNF B x B if x = X x X F x = A 𝑜 X 𝑜 F X + 𝑜 A CNF B y B if y X F y
104 103 simprd φ A CNF B x B if x = X x X F x = A 𝑜 X 𝑜 F X + 𝑜 A CNF B y B if y X F y
105 65 104 eqtrd φ A CNF B x B if x X F x = A 𝑜 X 𝑜 F X + 𝑜 A CNF B y B if y X F y
106 onelon A On F X A F X On
107 2 83 106 syl2anc φ F X On
108 omsuc A 𝑜 X On F X On A 𝑜 X 𝑜 suc F X = A 𝑜 X 𝑜 F X + 𝑜 A 𝑜 X
109 16 107 108 syl2anc φ A 𝑜 X 𝑜 suc F X = A 𝑜 X 𝑜 F X + 𝑜 A 𝑜 X
110 eloni G X On Ord G X
111 22 110 syl φ Ord G X
112 11 simp2d φ F X G X
113 ordsucss Ord G X F X G X suc F X G X
114 111 112 113 sylc φ suc F X G X
115 suceloni F X On suc F X On
116 107 115 syl φ suc F X On
117 omwordi suc F X On G X On A 𝑜 X On suc F X G X A 𝑜 X 𝑜 suc F X A 𝑜 X 𝑜 G X
118 116 22 16 117 syl3anc φ suc F X G X A 𝑜 X 𝑜 suc F X A 𝑜 X 𝑜 G X
119 114 118 mpd φ A 𝑜 X 𝑜 suc F X A 𝑜 X 𝑜 G X
120 109 119 eqsstrrd φ A 𝑜 X 𝑜 F X + 𝑜 A 𝑜 X A 𝑜 X 𝑜 G X
121 1 2 3 82 73 14 87 cantnflt2 φ A CNF B y B if y X F y A 𝑜 X
122 onelon A 𝑜 X On A CNF B y B if y X F y A 𝑜 X A CNF B y B if y X F y On
123 16 121 122 syl2anc φ A CNF B y B if y X F y On
124 omcl A 𝑜 X On F X On A 𝑜 X 𝑜 F X On
125 16 107 124 syl2anc φ A 𝑜 X 𝑜 F X On
126 oaord A CNF B y B if y X F y On A 𝑜 X On A 𝑜 X 𝑜 F X On A CNF B y B if y X F y A 𝑜 X A 𝑜 X 𝑜 F X + 𝑜 A CNF B y B if y X F y A 𝑜 X 𝑜 F X + 𝑜 A 𝑜 X
127 123 16 125 126 syl3anc φ A CNF B y B if y X F y A 𝑜 X A 𝑜 X 𝑜 F X + 𝑜 A CNF B y B if y X F y A 𝑜 X 𝑜 F X + 𝑜 A 𝑜 X
128 121 127 mpbid φ A 𝑜 X 𝑜 F X + 𝑜 A CNF B y B if y X F y A 𝑜 X 𝑜 F X + 𝑜 A 𝑜 X
129 120 128 sseldd φ A 𝑜 X 𝑜 F X + 𝑜 A CNF B y B if y X F y A 𝑜 X 𝑜 G X
130 105 129 eqeltrd φ A CNF B x B if x X F x A 𝑜 X 𝑜 G X
131 54 130 sseldd φ A CNF B x B if x X F x H suc O -1 X