Metamath Proof Explorer


Theorem cantnflem1d

Description: Lemma for cantnf . (Contributed by Mario Carneiro, 4-Jun-2015) (Revised by AV, 2-Jul-2019)

Ref Expression
Hypotheses cantnfs.s S=domACNFB
cantnfs.a φAOn
cantnfs.b φBOn
oemapval.t T=xy|zBxzyzwBzwxw=yw
oemapval.f φFS
oemapval.g φGS
oemapvali.r φFTG
oemapvali.x X=cB|FcGc
cantnflem1.o O=OrdIsoEGsupp
cantnflem1.h H=seqωkV,zVA𝑜Ok𝑜GOk+𝑜z
Assertion cantnflem1d φACNFBxBifxXFxHsucO-1X

Proof

Step Hyp Ref Expression
1 cantnfs.s S=domACNFB
2 cantnfs.a φAOn
3 cantnfs.b φBOn
4 oemapval.t T=xy|zBxzyzwBzwxw=yw
5 oemapval.f φFS
6 oemapval.g φGS
7 oemapvali.r φFTG
8 oemapvali.x X=cB|FcGc
9 cantnflem1.o O=OrdIsoEGsupp
10 cantnflem1.h H=seqωkV,zVA𝑜Ok𝑜GOk+𝑜z
11 1 2 3 4 5 6 7 8 oemapvali φXBFXGXwBXwFw=Gw
12 11 simp1d φXB
13 onelon BOnXBXOn
14 3 12 13 syl2anc φXOn
15 oecl AOnXOnA𝑜XOn
16 2 14 15 syl2anc φA𝑜XOn
17 1 2 3 cantnfs φGSG:BAfinSuppG
18 6 17 mpbid φG:BAfinSuppG
19 18 simpld φG:BA
20 19 12 ffvelcdmd φGXA
21 onelon AOnGXAGXOn
22 2 20 21 syl2anc φGXOn
23 omcl A𝑜XOnGXOnA𝑜X𝑜GXOn
24 16 22 23 syl2anc φA𝑜X𝑜GXOn
25 ovexd φGsuppV
26 1 2 3 9 6 cantnfcl φEWesuppGdomOω
27 26 simpld φEWesuppG
28 9 oiiso GsuppVEWesuppGOIsomE,EdomOGsupp
29 25 27 28 syl2anc φOIsomE,EdomOGsupp
30 isof1o OIsomE,EdomOGsuppO:domO1-1 ontoGsupp
31 29 30 syl φO:domO1-1 ontoGsupp
32 f1ocnv O:domO1-1 ontoGsuppO-1:Gsupp1-1 ontodomO
33 f1of O-1:Gsupp1-1 ontodomOO-1:GsuppdomO
34 31 32 33 3syl φO-1:GsuppdomO
35 1 2 3 4 5 6 7 8 cantnflem1a φXsuppG
36 34 35 ffvelcdmd φO-1XdomO
37 26 simprd φdomOω
38 elnn O-1XdomOdomOωO-1Xω
39 36 37 38 syl2anc φO-1Xω
40 10 cantnfvalf H:ωOn
41 40 ffvelcdmi O-1XωHO-1XOn
42 39 41 syl φHO-1XOn
43 oaword1 A𝑜X𝑜GXOnHO-1XOnA𝑜X𝑜GXA𝑜X𝑜GX+𝑜HO-1X
44 24 42 43 syl2anc φA𝑜X𝑜GXA𝑜X𝑜GX+𝑜HO-1X
45 1 2 3 9 6 10 cantnfsuc φO-1XωHsucO-1X=A𝑜OO-1X𝑜GOO-1X+𝑜HO-1X
46 39 45 mpdan φHsucO-1X=A𝑜OO-1X𝑜GOO-1X+𝑜HO-1X
47 f1ocnvfv2 O:domO1-1 ontoGsuppXsuppGOO-1X=X
48 31 35 47 syl2anc φOO-1X=X
49 48 oveq2d φA𝑜OO-1X=A𝑜X
50 48 fveq2d φGOO-1X=GX
51 49 50 oveq12d φA𝑜OO-1X𝑜GOO-1X=A𝑜X𝑜GX
52 51 oveq1d φA𝑜OO-1X𝑜GOO-1X+𝑜HO-1X=A𝑜X𝑜GX+𝑜HO-1X
53 46 52 eqtrd φHsucO-1X=A𝑜X𝑜GX+𝑜HO-1X
54 44 53 sseqtrrd φA𝑜X𝑜GXHsucO-1X
55 onss BOnBOn
56 3 55 syl φBOn
57 56 sselda φxBxOn
58 14 adantr φxBXOn
59 onsseleq xOnXOnxXxXx=X
60 57 58 59 syl2anc φxBxXxXx=X
61 orcom xXx=Xx=XxX
62 60 61 bitrdi φxBxXx=XxX
63 62 ifbid φxBifxXFx=ifx=XxXFx
64 63 mpteq2dva φxBifxXFx=xBifx=XxXFx
65 64 fveq2d φACNFBxBifxXFx=ACNFBxBifx=XxXFx
66 1 2 3 cantnfs φFSF:BAfinSuppF
67 5 66 mpbid φF:BAfinSuppF
68 67 simpld φF:BA
69 68 ffvelcdmda φyBFyA
70 20 ne0d φA
71 on0eln0 AOnAA
72 2 71 syl φAA
73 70 72 mpbird φA
74 73 adantr φyBA
75 69 74 ifcld φyBifyXFyA
76 75 fmpttd φyBifyXFy:BA
77 0ex V
78 77 a1i φV
79 67 simprd φfinSuppF
80 68 3 78 79 fsuppmptif φfinSuppyBifyXFy
81 1 2 3 cantnfs φyBifyXFySyBifyXFy:BAfinSuppyBifyXFy
82 76 80 81 mpbir2and φyBifyXFyS
83 68 12 ffvelcdmd φFXA
84 eldifn yBX¬yX
85 84 adantl φyBX¬yX
86 85 iffalsed φyBXifyXFy=
87 86 3 suppss2 φyBifyXFysuppX
88 ifor ifx=XxXFx=ifx=XFxifxXFx
89 fveq2 x=XFx=FX
90 89 adantl xBx=XFx=FX
91 90 ifeq1da xBifx=XFxyBifyXFyx=ifx=XFXyBifyXFyx
92 eleq1w y=xyXxX
93 fveq2 y=xFy=Fx
94 92 93 ifbieq1d y=xifyXFy=ifxXFx
95 eqid yBifyXFy=yBifyXFy
96 fvex FxV
97 96 77 ifex ifxXFxV
98 94 95 97 fvmpt xByBifyXFyx=ifxXFx
99 98 ifeq2d xBifx=XFxyBifyXFyx=ifx=XFxifxXFx
100 91 99 eqtr3d xBifx=XFXyBifyXFyx=ifx=XFxifxXFx
101 88 100 eqtr4id xBifx=XxXFx=ifx=XFXyBifyXFyx
102 101 mpteq2ia xBifx=XxXFx=xBifx=XFXyBifyXFyx
103 1 2 3 82 12 83 87 102 cantnfp1 φxBifx=XxXFxSACNFBxBifx=XxXFx=A𝑜X𝑜FX+𝑜ACNFByBifyXFy
104 103 simprd φACNFBxBifx=XxXFx=A𝑜X𝑜FX+𝑜ACNFByBifyXFy
105 65 104 eqtrd φACNFBxBifxXFx=A𝑜X𝑜FX+𝑜ACNFByBifyXFy
106 onelon AOnFXAFXOn
107 2 83 106 syl2anc φFXOn
108 omsuc A𝑜XOnFXOnA𝑜X𝑜sucFX=A𝑜X𝑜FX+𝑜A𝑜X
109 16 107 108 syl2anc φA𝑜X𝑜sucFX=A𝑜X𝑜FX+𝑜A𝑜X
110 eloni GXOnOrdGX
111 22 110 syl φOrdGX
112 11 simp2d φFXGX
113 ordsucss OrdGXFXGXsucFXGX
114 111 112 113 sylc φsucFXGX
115 onsuc FXOnsucFXOn
116 107 115 syl φsucFXOn
117 omwordi sucFXOnGXOnA𝑜XOnsucFXGXA𝑜X𝑜sucFXA𝑜X𝑜GX
118 116 22 16 117 syl3anc φsucFXGXA𝑜X𝑜sucFXA𝑜X𝑜GX
119 114 118 mpd φA𝑜X𝑜sucFXA𝑜X𝑜GX
120 109 119 eqsstrrd φA𝑜X𝑜FX+𝑜A𝑜XA𝑜X𝑜GX
121 1 2 3 82 73 14 87 cantnflt2 φACNFByBifyXFyA𝑜X
122 onelon A𝑜XOnACNFByBifyXFyA𝑜XACNFByBifyXFyOn
123 16 121 122 syl2anc φACNFByBifyXFyOn
124 omcl A𝑜XOnFXOnA𝑜X𝑜FXOn
125 16 107 124 syl2anc φA𝑜X𝑜FXOn
126 oaord ACNFByBifyXFyOnA𝑜XOnA𝑜X𝑜FXOnACNFByBifyXFyA𝑜XA𝑜X𝑜FX+𝑜ACNFByBifyXFyA𝑜X𝑜FX+𝑜A𝑜X
127 123 16 125 126 syl3anc φACNFByBifyXFyA𝑜XA𝑜X𝑜FX+𝑜ACNFByBifyXFyA𝑜X𝑜FX+𝑜A𝑜X
128 121 127 mpbid φA𝑜X𝑜FX+𝑜ACNFByBifyXFyA𝑜X𝑜FX+𝑜A𝑜X
129 120 128 sseldd φA𝑜X𝑜FX+𝑜ACNFByBifyXFyA𝑜X𝑜GX
130 105 129 eqeltrd φACNFBxBifxXFxA𝑜X𝑜GX
131 54 130 sseldd φACNFBxBifxXFxHsucO-1X