Description: Lemma for cantnf . (Contributed by Mario Carneiro, 4-Jun-2015) (Revised by AV, 2-Jul-2019) (Proof shortened by AV, 4-Apr-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cantnfs.s | |
|
cantnfs.a | |
||
cantnfs.b | |
||
oemapval.t | |
||
oemapval.f | |
||
oemapval.g | |
||
oemapvali.r | |
||
oemapvali.x | |
||
cantnflem1.o | |
||
Assertion | cantnflem1c | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cantnfs.s | |
|
2 | cantnfs.a | |
|
3 | cantnfs.b | |
|
4 | oemapval.t | |
|
5 | oemapval.f | |
|
6 | oemapval.g | |
|
7 | oemapvali.r | |
|
8 | oemapvali.x | |
|
9 | cantnflem1.o | |
|
10 | 3 | ad3antrrr | |
11 | simplr | |
|
12 | 1 2 3 | cantnfs | |
13 | 6 12 | mpbid | |
14 | 13 | simpld | |
15 | 14 | ffnd | |
16 | 15 | ad3antrrr | |
17 | 1 2 3 4 5 6 7 8 9 | cantnflem1b | |
18 | 17 | ad2antrr | |
19 | simprr | |
|
20 | 1 2 3 4 5 6 7 8 | oemapvali | |
21 | 20 | simp1d | |
22 | onelon | |
|
23 | 3 21 22 | syl2anc | |
24 | 23 | ad3antrrr | |
25 | onss | |
|
26 | 3 25 | syl | |
27 | 26 | sselda | |
28 | 27 | ad4ant13 | |
29 | ontr2 | |
|
30 | 24 28 29 | syl2anc | |
31 | 18 19 30 | mp2and | |
32 | eleq2w | |
|
33 | fveq2 | |
|
34 | fveq2 | |
|
35 | 33 34 | eqeq12d | |
36 | 32 35 | imbi12d | |
37 | 20 | simp3d | |
38 | 37 | ad3antrrr | |
39 | 36 38 11 | rspcdva | |
40 | 31 39 | mpd | |
41 | simprl | |
|
42 | 40 41 | eqnetrrd | |
43 | fvn0elsupp | |
|
44 | 10 11 16 42 43 | syl22anc | |