Metamath Proof Explorer


Theorem cantnflem1c

Description: Lemma for cantnf . (Contributed by Mario Carneiro, 4-Jun-2015) (Revised by AV, 2-Jul-2019) (Proof shortened by AV, 4-Apr-2020)

Ref Expression
Hypotheses cantnfs.s S=domACNFB
cantnfs.a φAOn
cantnfs.b φBOn
oemapval.t T=xy|zBxzyzwBzwxw=yw
oemapval.f φFS
oemapval.g φGS
oemapvali.r φFTG
oemapvali.x X=cB|FcGc
cantnflem1.o O=OrdIsoEGsupp
Assertion cantnflem1c φsucudomOO-1XuxBFxOuxxsuppG

Proof

Step Hyp Ref Expression
1 cantnfs.s S=domACNFB
2 cantnfs.a φAOn
3 cantnfs.b φBOn
4 oemapval.t T=xy|zBxzyzwBzwxw=yw
5 oemapval.f φFS
6 oemapval.g φGS
7 oemapvali.r φFTG
8 oemapvali.x X=cB|FcGc
9 cantnflem1.o O=OrdIsoEGsupp
10 3 ad3antrrr φsucudomOO-1XuxBFxOuxBOn
11 simplr φsucudomOO-1XuxBFxOuxxB
12 1 2 3 cantnfs φGSG:BAfinSuppG
13 6 12 mpbid φG:BAfinSuppG
14 13 simpld φG:BA
15 14 ffnd φGFnB
16 15 ad3antrrr φsucudomOO-1XuxBFxOuxGFnB
17 1 2 3 4 5 6 7 8 9 cantnflem1b φsucudomOO-1XuXOu
18 17 ad2antrr φsucudomOO-1XuxBFxOuxXOu
19 simprr φsucudomOO-1XuxBFxOuxOux
20 1 2 3 4 5 6 7 8 oemapvali φXBFXGXwBXwFw=Gw
21 20 simp1d φXB
22 onelon BOnXBXOn
23 3 21 22 syl2anc φXOn
24 23 ad3antrrr φsucudomOO-1XuxBFxOuxXOn
25 onss BOnBOn
26 3 25 syl φBOn
27 26 sselda φxBxOn
28 27 ad4ant13 φsucudomOO-1XuxBFxOuxxOn
29 ontr2 XOnxOnXOuOuxXx
30 24 28 29 syl2anc φsucudomOO-1XuxBFxOuxXOuOuxXx
31 18 19 30 mp2and φsucudomOO-1XuxBFxOuxXx
32 eleq2w w=xXwXx
33 fveq2 w=xFw=Fx
34 fveq2 w=xGw=Gx
35 33 34 eqeq12d w=xFw=GwFx=Gx
36 32 35 imbi12d w=xXwFw=GwXxFx=Gx
37 20 simp3d φwBXwFw=Gw
38 37 ad3antrrr φsucudomOO-1XuxBFxOuxwBXwFw=Gw
39 36 38 11 rspcdva φsucudomOO-1XuxBFxOuxXxFx=Gx
40 31 39 mpd φsucudomOO-1XuxBFxOuxFx=Gx
41 simprl φsucudomOO-1XuxBFxOuxFx
42 40 41 eqnetrrd φsucudomOO-1XuxBFxOuxGx
43 fvn0elsupp BOnxBGFnBGxxsuppG
44 10 11 16 42 43 syl22anc φsucudomOO-1XuxBFxOuxxsuppG