| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cantnfs.s |
|
| 2 |
|
cantnfs.a |
|
| 3 |
|
cantnfs.b |
|
| 4 |
|
cantnfp1.g |
|
| 5 |
|
cantnfp1.x |
|
| 6 |
|
cantnfp1.y |
|
| 7 |
|
cantnfp1.s |
|
| 8 |
|
cantnfp1.f |
|
| 9 |
6
|
adantr |
|
| 10 |
1 2 3
|
cantnfs |
|
| 11 |
4 10
|
mpbid |
|
| 12 |
11
|
simpld |
|
| 13 |
12
|
ffvelcdmda |
|
| 14 |
9 13
|
ifcld |
|
| 15 |
14 8
|
fmptd |
|
| 16 |
11
|
simprd |
|
| 17 |
16
|
fsuppimpd |
|
| 18 |
|
snfi |
|
| 19 |
|
unfi |
|
| 20 |
17 18 19
|
sylancl |
|
| 21 |
|
eqeq1 |
|
| 22 |
|
fveq2 |
|
| 23 |
21 22
|
ifbieq2d |
|
| 24 |
|
eldifi |
|
| 25 |
24
|
adantl |
|
| 26 |
6
|
adantr |
|
| 27 |
|
fvex |
|
| 28 |
|
ifexg |
|
| 29 |
26 27 28
|
sylancl |
|
| 30 |
8 23 25 29
|
fvmptd3 |
|
| 31 |
|
eldifn |
|
| 32 |
31
|
adantl |
|
| 33 |
|
velsn |
|
| 34 |
|
elun2 |
|
| 35 |
33 34
|
sylbir |
|
| 36 |
32 35
|
nsyl |
|
| 37 |
36
|
iffalsed |
|
| 38 |
|
ssun1 |
|
| 39 |
|
sscon |
|
| 40 |
38 39
|
ax-mp |
|
| 41 |
40
|
sseli |
|
| 42 |
|
ssidd |
|
| 43 |
|
0ex |
|
| 44 |
43
|
a1i |
|
| 45 |
12 42 3 44
|
suppssr |
|
| 46 |
41 45
|
sylan2 |
|
| 47 |
30 37 46
|
3eqtrd |
|
| 48 |
15 47
|
suppss |
|
| 49 |
20 48
|
ssfid |
|
| 50 |
8
|
funmpt2 |
|
| 51 |
|
mptexg |
|
| 52 |
8 51
|
eqeltrid |
|
| 53 |
3 52
|
syl |
|
| 54 |
|
funisfsupp |
|
| 55 |
50 53 44 54
|
mp3an2i |
|
| 56 |
49 55
|
mpbird |
|
| 57 |
1 2 3
|
cantnfs |
|
| 58 |
15 56 57
|
mpbir2and |
|