Metamath Proof Explorer


Theorem cantnftermord

Description: For terms of the form of a power of omega times a non-zero natural number, ordering of the exponents implies ordering of the terms. Lemma 5.1 of Schloeder p. 15. (Contributed by RP, 30-Jan-2025)

Ref Expression
Assertion cantnftermord AOnBOnCω1𝑜Dω1𝑜ABω𝑜A𝑜Cω𝑜B𝑜D

Proof

Step Hyp Ref Expression
1 simplll AOnBOnCω1𝑜Dω1𝑜ABAOn
2 onsuc AOnsucAOn
3 1 2 syl AOnBOnCω1𝑜Dω1𝑜ABsucAOn
4 simpllr AOnBOnCω1𝑜Dω1𝑜ABBOn
5 omelon ωOn
6 1onn 1𝑜ω
7 ondif2 ωOn2𝑜ωOn1𝑜ω
8 5 6 7 mpbir2an ωOn2𝑜
9 8 a1i AOnBOnCω1𝑜Dω1𝑜ABωOn2𝑜
10 onsucss BOnABsucAB
11 10 ad2antlr AOnBOnCω1𝑜Dω1𝑜ABsucAB
12 11 imp AOnBOnCω1𝑜Dω1𝑜ABsucAB
13 oeword sucAOnBOnωOn2𝑜sucABω𝑜sucAω𝑜B
14 13 biimpa sucAOnBOnωOn2𝑜sucABω𝑜sucAω𝑜B
15 3 4 9 12 14 syl31anc AOnBOnCω1𝑜Dω1𝑜ABω𝑜sucAω𝑜B
16 5 a1i AOnBOnωOn
17 oecl ωOnBOnω𝑜BOn
18 16 17 sylancom AOnBOnω𝑜BOn
19 omsson ωOn
20 ssdif ωOnω1𝑜On1𝑜
21 19 20 ax-mp ω1𝑜On1𝑜
22 21 sseli Dω1𝑜DOn1𝑜
23 ondif1 DOn1𝑜DOnD
24 22 23 sylib Dω1𝑜DOnD
25 24 adantl Cω1𝑜Dω1𝑜DOnD
26 18 25 anim12i AOnBOnCω1𝑜Dω1𝑜ω𝑜BOnDOnD
27 26 adantr AOnBOnCω1𝑜Dω1𝑜ABω𝑜BOnDOnD
28 anass ω𝑜BOnDOnDω𝑜BOnDOnD
29 27 28 sylibr AOnBOnCω1𝑜Dω1𝑜ABω𝑜BOnDOnD
30 omword1 ω𝑜BOnDOnDω𝑜Bω𝑜B𝑜D
31 29 30 syl AOnBOnCω1𝑜Dω1𝑜ABω𝑜Bω𝑜B𝑜D
32 15 31 sstrd AOnBOnCω1𝑜Dω1𝑜ABω𝑜sucAω𝑜B𝑜D
33 5 a1i AOnBOnCω1𝑜Dω1𝑜ABωOn
34 1 5 jctil AOnBOnCω1𝑜Dω1𝑜ABωOnAOn
35 oecl ωOnAOnω𝑜AOn
36 34 35 syl AOnBOnCω1𝑜Dω1𝑜ABω𝑜AOn
37 peano1 ω
38 oen0 ωOnAOnωω𝑜A
39 34 37 38 sylancl AOnBOnCω1𝑜Dω1𝑜ABω𝑜A
40 simplrl AOnBOnCω1𝑜Dω1𝑜ABCω1𝑜
41 40 eldifad AOnBOnCω1𝑜Dω1𝑜ABCω
42 omordi ωOnω𝑜AOnω𝑜ACωω𝑜A𝑜Cω𝑜A𝑜ω
43 42 imp ωOnω𝑜AOnω𝑜ACωω𝑜A𝑜Cω𝑜A𝑜ω
44 33 36 39 41 43 syl1111anc AOnBOnCω1𝑜Dω1𝑜ABω𝑜A𝑜Cω𝑜A𝑜ω
45 oesuc ωOnAOnω𝑜sucA=ω𝑜A𝑜ω
46 34 45 syl AOnBOnCω1𝑜Dω1𝑜ABω𝑜sucA=ω𝑜A𝑜ω
47 44 46 eleqtrrd AOnBOnCω1𝑜Dω1𝑜ABω𝑜A𝑜Cω𝑜sucA
48 32 47 sseldd AOnBOnCω1𝑜Dω1𝑜ABω𝑜A𝑜Cω𝑜B𝑜D
49 48 ex AOnBOnCω1𝑜Dω1𝑜ABω𝑜A𝑜Cω𝑜B𝑜D