Metamath Proof Explorer


Theorem cantnfval2

Description: Alternate expression for the value of the Cantor normal form function. (Contributed by Mario Carneiro, 25-May-2015) (Revised by AV, 28-Jun-2019)

Ref Expression
Hypotheses cantnfs.s S=domACNFB
cantnfs.a φAOn
cantnfs.b φBOn
cantnfcl.g G=OrdIsoEFsupp
cantnfcl.f φFS
cantnfval.h H=seqωkV,zVA𝑜Gk𝑜FGk+𝑜z
Assertion cantnfval2 φACNFBF=seqωkdomG,zOnA𝑜Gk𝑜FGk+𝑜zdomG

Proof

Step Hyp Ref Expression
1 cantnfs.s S=domACNFB
2 cantnfs.a φAOn
3 cantnfs.b φBOn
4 cantnfcl.g G=OrdIsoEFsupp
5 cantnfcl.f φFS
6 cantnfval.h H=seqωkV,zVA𝑜Gk𝑜FGk+𝑜z
7 1 2 3 4 5 6 cantnfval φACNFBF=HdomG
8 ssid domGdomG
9 1 2 3 4 5 cantnfcl φEWesuppFdomGω
10 9 simprd φdomGω
11 sseq1 u=udomGdomG
12 fveq2 u=Hu=H
13 0ex V
14 6 seqom0g VH=
15 13 14 ax-mp H=
16 12 15 eqtrdi u=Hu=
17 fveq2 u=seqωkdomG,zOnA𝑜Gk𝑜FGk+𝑜zu=seqωkdomG,zOnA𝑜Gk𝑜FGk+𝑜z
18 eqid seqωkdomG,zOnA𝑜Gk𝑜FGk+𝑜z=seqωkdomG,zOnA𝑜Gk𝑜FGk+𝑜z
19 18 seqom0g VseqωkdomG,zOnA𝑜Gk𝑜FGk+𝑜z=
20 13 19 ax-mp seqωkdomG,zOnA𝑜Gk𝑜FGk+𝑜z=
21 17 20 eqtrdi u=seqωkdomG,zOnA𝑜Gk𝑜FGk+𝑜zu=
22 16 21 eqeq12d u=Hu=seqωkdomG,zOnA𝑜Gk𝑜FGk+𝑜zu=
23 11 22 imbi12d u=udomGHu=seqωkdomG,zOnA𝑜Gk𝑜FGk+𝑜zudomG=
24 23 imbi2d u=φudomGHu=seqωkdomG,zOnA𝑜Gk𝑜FGk+𝑜zuφdomG=
25 sseq1 u=vudomGvdomG
26 fveq2 u=vHu=Hv
27 fveq2 u=vseqωkdomG,zOnA𝑜Gk𝑜FGk+𝑜zu=seqωkdomG,zOnA𝑜Gk𝑜FGk+𝑜zv
28 26 27 eqeq12d u=vHu=seqωkdomG,zOnA𝑜Gk𝑜FGk+𝑜zuHv=seqωkdomG,zOnA𝑜Gk𝑜FGk+𝑜zv
29 25 28 imbi12d u=vudomGHu=seqωkdomG,zOnA𝑜Gk𝑜FGk+𝑜zuvdomGHv=seqωkdomG,zOnA𝑜Gk𝑜FGk+𝑜zv
30 29 imbi2d u=vφudomGHu=seqωkdomG,zOnA𝑜Gk𝑜FGk+𝑜zuφvdomGHv=seqωkdomG,zOnA𝑜Gk𝑜FGk+𝑜zv
31 sseq1 u=sucvudomGsucvdomG
32 fveq2 u=sucvHu=Hsucv
33 fveq2 u=sucvseqωkdomG,zOnA𝑜Gk𝑜FGk+𝑜zu=seqωkdomG,zOnA𝑜Gk𝑜FGk+𝑜zsucv
34 32 33 eqeq12d u=sucvHu=seqωkdomG,zOnA𝑜Gk𝑜FGk+𝑜zuHsucv=seqωkdomG,zOnA𝑜Gk𝑜FGk+𝑜zsucv
35 31 34 imbi12d u=sucvudomGHu=seqωkdomG,zOnA𝑜Gk𝑜FGk+𝑜zusucvdomGHsucv=seqωkdomG,zOnA𝑜Gk𝑜FGk+𝑜zsucv
36 35 imbi2d u=sucvφudomGHu=seqωkdomG,zOnA𝑜Gk𝑜FGk+𝑜zuφsucvdomGHsucv=seqωkdomG,zOnA𝑜Gk𝑜FGk+𝑜zsucv
37 sseq1 u=domGudomGdomGdomG
38 fveq2 u=domGHu=HdomG
39 fveq2 u=domGseqωkdomG,zOnA𝑜Gk𝑜FGk+𝑜zu=seqωkdomG,zOnA𝑜Gk𝑜FGk+𝑜zdomG
40 38 39 eqeq12d u=domGHu=seqωkdomG,zOnA𝑜Gk𝑜FGk+𝑜zuHdomG=seqωkdomG,zOnA𝑜Gk𝑜FGk+𝑜zdomG
41 37 40 imbi12d u=domGudomGHu=seqωkdomG,zOnA𝑜Gk𝑜FGk+𝑜zudomGdomGHdomG=seqωkdomG,zOnA𝑜Gk𝑜FGk+𝑜zdomG
42 41 imbi2d u=domGφudomGHu=seqωkdomG,zOnA𝑜Gk𝑜FGk+𝑜zuφdomGdomGHdomG=seqωkdomG,zOnA𝑜Gk𝑜FGk+𝑜zdomG
43 eqid =
44 43 2a1i φdomG=
45 sssucid vsucv
46 sstr vsucvsucvdomGvdomG
47 45 46 mpan sucvdomGvdomG
48 47 imim1i vdomGHv=seqωkdomG,zOnA𝑜Gk𝑜FGk+𝑜zvsucvdomGHv=seqωkdomG,zOnA𝑜Gk𝑜FGk+𝑜zv
49 oveq2 Hv=seqωkdomG,zOnA𝑜Gk𝑜FGk+𝑜zvvkV,zVA𝑜Gk𝑜FGk+𝑜zHv=vkV,zVA𝑜Gk𝑜FGk+𝑜zseqωkdomG,zOnA𝑜Gk𝑜FGk+𝑜zv
50 6 seqomsuc vωHsucv=vkV,zVA𝑜Gk𝑜FGk+𝑜zHv
51 50 ad2antrl φvωsucvdomGHsucv=vkV,zVA𝑜Gk𝑜FGk+𝑜zHv
52 18 seqomsuc vωseqωkdomG,zOnA𝑜Gk𝑜FGk+𝑜zsucv=vkdomG,zOnA𝑜Gk𝑜FGk+𝑜zseqωkdomG,zOnA𝑜Gk𝑜FGk+𝑜zv
53 52 ad2antrl φvωsucvdomGseqωkdomG,zOnA𝑜Gk𝑜FGk+𝑜zsucv=vkdomG,zOnA𝑜Gk𝑜FGk+𝑜zseqωkdomG,zOnA𝑜Gk𝑜FGk+𝑜zv
54 ssv domGV
55 ssv OnV
56 resmpo domGVOnVkV,zVA𝑜Gk𝑜FGk+𝑜zdomG×On=kdomG,zOnA𝑜Gk𝑜FGk+𝑜z
57 54 55 56 mp2an kV,zVA𝑜Gk𝑜FGk+𝑜zdomG×On=kdomG,zOnA𝑜Gk𝑜FGk+𝑜z
58 57 oveqi vkV,zVA𝑜Gk𝑜FGk+𝑜zdomG×OnseqωkdomG,zOnA𝑜Gk𝑜FGk+𝑜zv=vkdomG,zOnA𝑜Gk𝑜FGk+𝑜zseqωkdomG,zOnA𝑜Gk𝑜FGk+𝑜zv
59 simprr φvωsucvdomGsucvdomG
60 vex vV
61 60 sucid vsucv
62 61 a1i φvωsucvdomGvsucv
63 59 62 sseldd φvωsucvdomGvdomG
64 18 cantnfvalf seqωkdomG,zOnA𝑜Gk𝑜FGk+𝑜z:ωOn
65 64 ffvelcdmi vωseqωkdomG,zOnA𝑜Gk𝑜FGk+𝑜zvOn
66 65 ad2antrl φvωsucvdomGseqωkdomG,zOnA𝑜Gk𝑜FGk+𝑜zvOn
67 ovres vdomGseqωkdomG,zOnA𝑜Gk𝑜FGk+𝑜zvOnvkV,zVA𝑜Gk𝑜FGk+𝑜zdomG×OnseqωkdomG,zOnA𝑜Gk𝑜FGk+𝑜zv=vkV,zVA𝑜Gk𝑜FGk+𝑜zseqωkdomG,zOnA𝑜Gk𝑜FGk+𝑜zv
68 63 66 67 syl2anc φvωsucvdomGvkV,zVA𝑜Gk𝑜FGk+𝑜zdomG×OnseqωkdomG,zOnA𝑜Gk𝑜FGk+𝑜zv=vkV,zVA𝑜Gk𝑜FGk+𝑜zseqωkdomG,zOnA𝑜Gk𝑜FGk+𝑜zv
69 58 68 eqtr3id φvωsucvdomGvkdomG,zOnA𝑜Gk𝑜FGk+𝑜zseqωkdomG,zOnA𝑜Gk𝑜FGk+𝑜zv=vkV,zVA𝑜Gk𝑜FGk+𝑜zseqωkdomG,zOnA𝑜Gk𝑜FGk+𝑜zv
70 53 69 eqtrd φvωsucvdomGseqωkdomG,zOnA𝑜Gk𝑜FGk+𝑜zsucv=vkV,zVA𝑜Gk𝑜FGk+𝑜zseqωkdomG,zOnA𝑜Gk𝑜FGk+𝑜zv
71 51 70 eqeq12d φvωsucvdomGHsucv=seqωkdomG,zOnA𝑜Gk𝑜FGk+𝑜zsucvvkV,zVA𝑜Gk𝑜FGk+𝑜zHv=vkV,zVA𝑜Gk𝑜FGk+𝑜zseqωkdomG,zOnA𝑜Gk𝑜FGk+𝑜zv
72 49 71 imbitrrid φvωsucvdomGHv=seqωkdomG,zOnA𝑜Gk𝑜FGk+𝑜zvHsucv=seqωkdomG,zOnA𝑜Gk𝑜FGk+𝑜zsucv
73 72 expr φvωsucvdomGHv=seqωkdomG,zOnA𝑜Gk𝑜FGk+𝑜zvHsucv=seqωkdomG,zOnA𝑜Gk𝑜FGk+𝑜zsucv
74 73 a2d φvωsucvdomGHv=seqωkdomG,zOnA𝑜Gk𝑜FGk+𝑜zvsucvdomGHsucv=seqωkdomG,zOnA𝑜Gk𝑜FGk+𝑜zsucv
75 48 74 syl5 φvωvdomGHv=seqωkdomG,zOnA𝑜Gk𝑜FGk+𝑜zvsucvdomGHsucv=seqωkdomG,zOnA𝑜Gk𝑜FGk+𝑜zsucv
76 75 expcom vωφvdomGHv=seqωkdomG,zOnA𝑜Gk𝑜FGk+𝑜zvsucvdomGHsucv=seqωkdomG,zOnA𝑜Gk𝑜FGk+𝑜zsucv
77 76 a2d vωφvdomGHv=seqωkdomG,zOnA𝑜Gk𝑜FGk+𝑜zvφsucvdomGHsucv=seqωkdomG,zOnA𝑜Gk𝑜FGk+𝑜zsucv
78 24 30 36 42 44 77 finds domGωφdomGdomGHdomG=seqωkdomG,zOnA𝑜Gk𝑜FGk+𝑜zdomG
79 10 78 mpcom φdomGdomGHdomG=seqωkdomG,zOnA𝑜Gk𝑜FGk+𝑜zdomG
80 8 79 mpi φHdomG=seqωkdomG,zOnA𝑜Gk𝑜FGk+𝑜zdomG
81 7 80 eqtrd φACNFBF=seqωkdomG,zOnA𝑜Gk𝑜FGk+𝑜zdomG