| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cantnfs.s |
|
| 2 |
|
cantnfs.a |
|
| 3 |
|
cantnfs.b |
|
| 4 |
|
cantnfcl.g |
|
| 5 |
|
cantnfcl.f |
|
| 6 |
|
cantnfval.h |
|
| 7 |
1 2 3 4 5 6
|
cantnfval |
|
| 8 |
|
ssid |
|
| 9 |
1 2 3 4 5
|
cantnfcl |
|
| 10 |
9
|
simprd |
|
| 11 |
|
sseq1 |
|
| 12 |
|
fveq2 |
|
| 13 |
|
0ex |
|
| 14 |
6
|
seqom0g |
|
| 15 |
13 14
|
ax-mp |
|
| 16 |
12 15
|
eqtrdi |
|
| 17 |
|
fveq2 |
|
| 18 |
|
eqid |
|
| 19 |
18
|
seqom0g |
|
| 20 |
13 19
|
ax-mp |
|
| 21 |
17 20
|
eqtrdi |
|
| 22 |
16 21
|
eqeq12d |
|
| 23 |
11 22
|
imbi12d |
|
| 24 |
23
|
imbi2d |
|
| 25 |
|
sseq1 |
|
| 26 |
|
fveq2 |
|
| 27 |
|
fveq2 |
|
| 28 |
26 27
|
eqeq12d |
|
| 29 |
25 28
|
imbi12d |
|
| 30 |
29
|
imbi2d |
|
| 31 |
|
sseq1 |
|
| 32 |
|
fveq2 |
|
| 33 |
|
fveq2 |
|
| 34 |
32 33
|
eqeq12d |
|
| 35 |
31 34
|
imbi12d |
|
| 36 |
35
|
imbi2d |
|
| 37 |
|
sseq1 |
|
| 38 |
|
fveq2 |
|
| 39 |
|
fveq2 |
|
| 40 |
38 39
|
eqeq12d |
|
| 41 |
37 40
|
imbi12d |
|
| 42 |
41
|
imbi2d |
|
| 43 |
|
eqid |
|
| 44 |
43
|
2a1i |
|
| 45 |
|
sssucid |
|
| 46 |
|
sstr |
|
| 47 |
45 46
|
mpan |
|
| 48 |
47
|
imim1i |
|
| 49 |
|
oveq2 |
|
| 50 |
6
|
seqomsuc |
|
| 51 |
50
|
ad2antrl |
|
| 52 |
18
|
seqomsuc |
|
| 53 |
52
|
ad2antrl |
|
| 54 |
|
ssv |
|
| 55 |
|
ssv |
|
| 56 |
|
resmpo |
|
| 57 |
54 55 56
|
mp2an |
|
| 58 |
57
|
oveqi |
|
| 59 |
|
simprr |
|
| 60 |
|
vex |
|
| 61 |
60
|
sucid |
|
| 62 |
61
|
a1i |
|
| 63 |
59 62
|
sseldd |
|
| 64 |
18
|
cantnfvalf |
|
| 65 |
64
|
ffvelcdmi |
|
| 66 |
65
|
ad2antrl |
|
| 67 |
|
ovres |
|
| 68 |
63 66 67
|
syl2anc |
|
| 69 |
58 68
|
eqtr3id |
|
| 70 |
53 69
|
eqtrd |
|
| 71 |
51 70
|
eqeq12d |
|
| 72 |
49 71
|
imbitrrid |
|
| 73 |
72
|
expr |
|
| 74 |
73
|
a2d |
|
| 75 |
48 74
|
syl5 |
|
| 76 |
75
|
expcom |
|
| 77 |
76
|
a2d |
|
| 78 |
24 30 36 42 44 77
|
finds |
|
| 79 |
10 78
|
mpcom |
|
| 80 |
8 79
|
mpi |
|
| 81 |
7 80
|
eqtrd |
|