Metamath Proof Explorer


Theorem caofcan

Description: Transfer a cancellation law like mulcan to the function operation. (Contributed by Steve Rodriguez, 16-Nov-2015)

Ref Expression
Hypotheses caofcan.1 φ A V
caofcan.2 φ F : A T
caofcan.3 φ G : A S
caofcan.4 φ H : A S
caofcan.5 φ x T y S z S x R y = x R z y = z
Assertion caofcan φ F R f G = F R f H G = H

Proof

Step Hyp Ref Expression
1 caofcan.1 φ A V
2 caofcan.2 φ F : A T
3 caofcan.3 φ G : A S
4 caofcan.4 φ H : A S
5 caofcan.5 φ x T y S z S x R y = x R z y = z
6 2 ffnd φ F Fn A
7 3 ffnd φ G Fn A
8 inidm A A = A
9 eqidd φ w A F w = F w
10 eqidd φ w A G w = G w
11 6 7 1 1 8 9 10 ofval φ w A F R f G w = F w R G w
12 4 ffnd φ H Fn A
13 eqidd φ w A H w = H w
14 6 12 1 1 8 9 13 ofval φ w A F R f H w = F w R H w
15 11 14 eqeq12d φ w A F R f G w = F R f H w F w R G w = F w R H w
16 simpl φ w A φ
17 2 ffvelrnda φ w A F w T
18 3 ffvelrnda φ w A G w S
19 4 ffvelrnda φ w A H w S
20 5 caovcang φ F w T G w S H w S F w R G w = F w R H w G w = H w
21 16 17 18 19 20 syl13anc φ w A F w R G w = F w R H w G w = H w
22 15 21 bitrd φ w A F R f G w = F R f H w G w = H w
23 22 ralbidva φ w A F R f G w = F R f H w w A G w = H w
24 6 7 1 1 8 offn φ F R f G Fn A
25 6 12 1 1 8 offn φ F R f H Fn A
26 eqfnfv F R f G Fn A F R f H Fn A F R f G = F R f H w A F R f G w = F R f H w
27 24 25 26 syl2anc φ F R f G = F R f H w A F R f G w = F R f H w
28 eqfnfv G Fn A H Fn A G = H w A G w = H w
29 7 12 28 syl2anc φ G = H w A G w = H w
30 23 27 29 3bitr4d φ F R f G = F R f H G = H