| Step | Hyp | Ref | Expression | 
						
							| 1 |  | caofcan.1 |  | 
						
							| 2 |  | caofcan.2 |  | 
						
							| 3 |  | caofcan.3 |  | 
						
							| 4 |  | caofcan.4 |  | 
						
							| 5 |  | caofcan.5 |  | 
						
							| 6 | 2 | ffnd |  | 
						
							| 7 | 3 | ffnd |  | 
						
							| 8 |  | inidm |  | 
						
							| 9 |  | eqidd |  | 
						
							| 10 |  | eqidd |  | 
						
							| 11 | 6 7 1 1 8 9 10 | ofval |  | 
						
							| 12 | 4 | ffnd |  | 
						
							| 13 |  | eqidd |  | 
						
							| 14 | 6 12 1 1 8 9 13 | ofval |  | 
						
							| 15 | 11 14 | eqeq12d |  | 
						
							| 16 |  | simpl |  | 
						
							| 17 | 2 | ffvelcdmda |  | 
						
							| 18 | 3 | ffvelcdmda |  | 
						
							| 19 | 4 | ffvelcdmda |  | 
						
							| 20 | 5 | caovcang |  | 
						
							| 21 | 16 17 18 19 20 | syl13anc |  | 
						
							| 22 | 15 21 | bitrd |  | 
						
							| 23 | 22 | ralbidva |  | 
						
							| 24 | 6 7 1 1 8 | offn |  | 
						
							| 25 | 6 12 1 1 8 | offn |  | 
						
							| 26 |  | eqfnfv |  | 
						
							| 27 | 24 25 26 | syl2anc |  | 
						
							| 28 |  | eqfnfv |  | 
						
							| 29 | 7 12 28 | syl2anc |  | 
						
							| 30 | 23 27 29 | 3bitr4d |  |