Metamath Proof Explorer


Theorem caragenunidm

Description: The base set of an outer measure belongs to the sigma-algebra generated by the Caratheodory's construction. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses caragenunidm.o φ O OutMeas
caragenunidm.x X = dom O
caragenunidm.s S = CaraGen O
Assertion caragenunidm φ X S

Proof

Step Hyp Ref Expression
1 caragenunidm.o φ O OutMeas
2 caragenunidm.x X = dom O
3 caragenunidm.s S = CaraGen O
4 dmexg O OutMeas dom O V
5 uniexg dom O V dom O V
6 1 4 5 3syl φ dom O V
7 2 6 eqeltrid φ X V
8 pwidg X V X 𝒫 X
9 7 8 syl φ X 𝒫 X
10 elpwi a 𝒫 X a X
11 df-ss a X a X = a
12 11 biimpi a X a X = a
13 10 12 syl a 𝒫 X a X = a
14 13 fveq2d a 𝒫 X O a X = O a
15 14 adantl φ a 𝒫 X O a X = O a
16 ssdif0 a X a X =
17 10 16 sylib a 𝒫 X a X =
18 17 fveq2d a 𝒫 X O a X = O
19 18 adantl φ a 𝒫 X O a X = O
20 1 ome0 φ O = 0
21 20 adantr φ a 𝒫 X O = 0
22 19 21 eqtrd φ a 𝒫 X O a X = 0
23 15 22 oveq12d φ a 𝒫 X O a X + 𝑒 O a X = O a + 𝑒 0
24 iccssxr 0 +∞ *
25 1 adantr φ a 𝒫 X O OutMeas
26 10 adantl φ a 𝒫 X a X
27 25 2 26 omecl φ a 𝒫 X O a 0 +∞
28 24 27 sselid φ a 𝒫 X O a *
29 28 xaddid1d φ a 𝒫 X O a + 𝑒 0 = O a
30 eqidd φ a 𝒫 X O a = O a
31 23 29 30 3eqtrd φ a 𝒫 X O a X + 𝑒 O a X = O a
32 1 2 3 9 31 carageneld φ X S