Metamath Proof Explorer


Theorem caragenunidm

Description: The base set of an outer measure belongs to the sigma-algebra generated by the Caratheodory's construction. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses caragenunidm.o φOOutMeas
caragenunidm.x X=domO
caragenunidm.s S=CaraGenO
Assertion caragenunidm φXS

Proof

Step Hyp Ref Expression
1 caragenunidm.o φOOutMeas
2 caragenunidm.x X=domO
3 caragenunidm.s S=CaraGenO
4 dmexg OOutMeasdomOV
5 uniexg domOVdomOV
6 1 4 5 3syl φdomOV
7 2 6 eqeltrid φXV
8 pwidg XVX𝒫X
9 7 8 syl φX𝒫X
10 elpwi a𝒫XaX
11 df-ss aXaX=a
12 11 biimpi aXaX=a
13 10 12 syl a𝒫XaX=a
14 13 fveq2d a𝒫XOaX=Oa
15 14 adantl φa𝒫XOaX=Oa
16 ssdif0 aXaX=
17 10 16 sylib a𝒫XaX=
18 17 fveq2d a𝒫XOaX=O
19 18 adantl φa𝒫XOaX=O
20 1 ome0 φO=0
21 20 adantr φa𝒫XO=0
22 19 21 eqtrd φa𝒫XOaX=0
23 15 22 oveq12d φa𝒫XOaX+𝑒OaX=Oa+𝑒0
24 iccssxr 0+∞*
25 1 adantr φa𝒫XOOutMeas
26 10 adantl φa𝒫XaX
27 25 2 26 omecl φa𝒫XOa0+∞
28 24 27 sselid φa𝒫XOa*
29 28 xaddridd φa𝒫XOa+𝑒0=Oa
30 eqidd φa𝒫XOa=Oa
31 23 29 30 3eqtrd φa𝒫XOaX+𝑒OaX=Oa
32 1 2 3 9 31 carageneld φXS