Metamath Proof Explorer


Theorem cardlim

Description: An infinite cardinal is a limit ordinal. Equivalent to Exercise 4 of TakeutiZaring p. 91. (Contributed by Mario Carneiro, 13-Jan-2013)

Ref Expression
Assertion cardlim ωcardALimcardA

Proof

Step Hyp Ref Expression
1 sseq2 cardA=sucxωcardAωsucx
2 1 biimpd cardA=sucxωcardAωsucx
3 limom Limω
4 limsssuc Limωωxωsucx
5 3 4 ax-mp ωxωsucx
6 infensuc xOnωxxsucx
7 6 ex xOnωxxsucx
8 5 7 biimtrrid xOnωsucxxsucx
9 2 8 sylan9r xOncardA=sucxωcardAxsucx
10 breq2 cardA=sucxxcardAxsucx
11 10 adantl xOncardA=sucxxcardAxsucx
12 9 11 sylibrd xOncardA=sucxωcardAxcardA
13 12 ex xOncardA=sucxωcardAxcardA
14 13 com3r ωcardAxOncardA=sucxxcardA
15 14 imp ωcardAxOncardA=sucxxcardA
16 vex xV
17 16 sucid xsucx
18 eleq2 cardA=sucxxcardAxsucx
19 17 18 mpbiri cardA=sucxxcardA
20 cardidm cardcardA=cardA
21 19 20 eleqtrrdi cardA=sucxxcardcardA
22 cardne xcardcardA¬xcardA
23 21 22 syl cardA=sucx¬xcardA
24 23 a1i ωcardAxOncardA=sucx¬xcardA
25 15 24 pm2.65d ωcardAxOn¬cardA=sucx
26 25 nrexdv ωcardA¬xOncardA=sucx
27 peano1 ω
28 ssel ωcardAωcardA
29 27 28 mpi ωcardAcardA
30 n0i cardA¬cardA=
31 cardon cardAOn
32 31 onordi OrdcardA
33 ordzsl OrdcardAcardA=xOncardA=sucxLimcardA
34 32 33 mpbi cardA=xOncardA=sucxLimcardA
35 3orass cardA=xOncardA=sucxLimcardAcardA=xOncardA=sucxLimcardA
36 34 35 mpbi cardA=xOncardA=sucxLimcardA
37 36 ori ¬cardA=xOncardA=sucxLimcardA
38 29 30 37 3syl ωcardAxOncardA=sucxLimcardA
39 38 ord ωcardA¬xOncardA=sucxLimcardA
40 26 39 mpd ωcardALimcardA
41 limomss LimcardAωcardA
42 40 41 impbii ωcardALimcardA