Description: An infinite cardinal is a limit ordinal. Equivalent to Exercise 4 of TakeutiZaring p. 91. (Contributed by Mario Carneiro, 13-Jan-2013)
Ref | Expression | ||
---|---|---|---|
Assertion | cardlim | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseq2 | |
|
2 | 1 | biimpd | |
3 | limom | |
|
4 | limsssuc | |
|
5 | 3 4 | ax-mp | |
6 | infensuc | |
|
7 | 6 | ex | |
8 | 5 7 | biimtrrid | |
9 | 2 8 | sylan9r | |
10 | breq2 | |
|
11 | 10 | adantl | |
12 | 9 11 | sylibrd | |
13 | 12 | ex | |
14 | 13 | com3r | |
15 | 14 | imp | |
16 | vex | |
|
17 | 16 | sucid | |
18 | eleq2 | |
|
19 | 17 18 | mpbiri | |
20 | cardidm | |
|
21 | 19 20 | eleqtrrdi | |
22 | cardne | |
|
23 | 21 22 | syl | |
24 | 23 | a1i | |
25 | 15 24 | pm2.65d | |
26 | 25 | nrexdv | |
27 | peano1 | |
|
28 | ssel | |
|
29 | 27 28 | mpi | |
30 | n0i | |
|
31 | cardon | |
|
32 | 31 | onordi | |
33 | ordzsl | |
|
34 | 32 33 | mpbi | |
35 | 3orass | |
|
36 | 34 35 | mpbi | |
37 | 36 | ori | |
38 | 29 30 37 | 3syl | |
39 | 38 | ord | |
40 | 26 39 | mpd | |
41 | limomss | |
|
42 | 40 41 | impbii | |