Metamath Proof Explorer


Theorem catsubcat

Description: For any category C , C itself is a (full) subcategory of C , see example 4.3(1.b) in Adamek p. 48. (Contributed by AV, 23-Apr-2020)

Ref Expression
Assertion catsubcat CCatHom𝑓CSubcatC

Proof

Step Hyp Ref Expression
1 ssidd CCatBaseCBaseC
2 ssidd CCatxBaseCyBaseCxHom𝑓CyxHom𝑓Cy
3 2 ralrimivva CCatxBaseCyBaseCxHom𝑓CyxHom𝑓Cy
4 eqid Hom𝑓C=Hom𝑓C
5 eqid BaseC=BaseC
6 4 5 homffn Hom𝑓CFnBaseC×BaseC
7 6 a1i CCatHom𝑓CFnBaseC×BaseC
8 fvexd CCatBaseCV
9 7 7 8 isssc CCatHom𝑓CcatHom𝑓CBaseCBaseCxBaseCyBaseCxHom𝑓CyxHom𝑓Cy
10 1 3 9 mpbir2and CCatHom𝑓CcatHom𝑓C
11 eqid HomC=HomC
12 eqid IdC=IdC
13 simpl CCatxBaseCCCat
14 simpr CCatxBaseCxBaseC
15 5 11 12 13 14 catidcl CCatxBaseCIdCxxHomCx
16 4 5 11 14 14 homfval CCatxBaseCxHom𝑓Cx=xHomCx
17 15 16 eleqtrrd CCatxBaseCIdCxxHom𝑓Cx
18 eqid compC=compC
19 13 adantr CCatxBaseCyBaseCzBaseCCCat
20 19 adantr CCatxBaseCyBaseCzBaseCfxHom𝑓CygyHom𝑓CzCCat
21 14 adantr CCatxBaseCyBaseCzBaseCxBaseC
22 21 adantr CCatxBaseCyBaseCzBaseCfxHom𝑓CygyHom𝑓CzxBaseC
23 simpl yBaseCzBaseCyBaseC
24 23 adantl CCatxBaseCyBaseCzBaseCyBaseC
25 24 adantr CCatxBaseCyBaseCzBaseCfxHom𝑓CygyHom𝑓CzyBaseC
26 simpr yBaseCzBaseCzBaseC
27 26 adantl CCatxBaseCyBaseCzBaseCzBaseC
28 27 adantr CCatxBaseCyBaseCzBaseCfxHom𝑓CygyHom𝑓CzzBaseC
29 4 5 11 21 24 homfval CCatxBaseCyBaseCzBaseCxHom𝑓Cy=xHomCy
30 29 eleq2d CCatxBaseCyBaseCzBaseCfxHom𝑓CyfxHomCy
31 30 biimpcd fxHom𝑓CyCCatxBaseCyBaseCzBaseCfxHomCy
32 31 adantr fxHom𝑓CygyHom𝑓CzCCatxBaseCyBaseCzBaseCfxHomCy
33 32 impcom CCatxBaseCyBaseCzBaseCfxHom𝑓CygyHom𝑓CzfxHomCy
34 4 5 11 24 27 homfval CCatxBaseCyBaseCzBaseCyHom𝑓Cz=yHomCz
35 34 eleq2d CCatxBaseCyBaseCzBaseCgyHom𝑓CzgyHomCz
36 35 biimpd CCatxBaseCyBaseCzBaseCgyHom𝑓CzgyHomCz
37 36 adantld CCatxBaseCyBaseCzBaseCfxHom𝑓CygyHom𝑓CzgyHomCz
38 37 imp CCatxBaseCyBaseCzBaseCfxHom𝑓CygyHom𝑓CzgyHomCz
39 5 11 18 20 22 25 28 33 38 catcocl CCatxBaseCyBaseCzBaseCfxHom𝑓CygyHom𝑓CzgxycompCzfxHomCz
40 4 5 11 21 27 homfval CCatxBaseCyBaseCzBaseCxHom𝑓Cz=xHomCz
41 40 adantr CCatxBaseCyBaseCzBaseCfxHom𝑓CygyHom𝑓CzxHom𝑓Cz=xHomCz
42 39 41 eleqtrrd CCatxBaseCyBaseCzBaseCfxHom𝑓CygyHom𝑓CzgxycompCzfxHom𝑓Cz
43 42 ralrimivva CCatxBaseCyBaseCzBaseCfxHom𝑓CygyHom𝑓CzgxycompCzfxHom𝑓Cz
44 43 ralrimivva CCatxBaseCyBaseCzBaseCfxHom𝑓CygyHom𝑓CzgxycompCzfxHom𝑓Cz
45 17 44 jca CCatxBaseCIdCxxHom𝑓CxyBaseCzBaseCfxHom𝑓CygyHom𝑓CzgxycompCzfxHom𝑓Cz
46 45 ralrimiva CCatxBaseCIdCxxHom𝑓CxyBaseCzBaseCfxHom𝑓CygyHom𝑓CzgxycompCzfxHom𝑓Cz
47 id CCatCCat
48 4 12 18 47 7 issubc2 CCatHom𝑓CSubcatCHom𝑓CcatHom𝑓CxBaseCIdCxxHom𝑓CxyBaseCzBaseCfxHom𝑓CygyHom𝑓CzgxycompCzfxHom𝑓Cz
49 10 46 48 mpbir2and CCatHom𝑓CSubcatC