| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ssidd |
|
| 2 |
|
ssidd |
|
| 3 |
2
|
ralrimivva |
|
| 4 |
|
eqid |
|
| 5 |
|
eqid |
|
| 6 |
4 5
|
homffn |
|
| 7 |
6
|
a1i |
|
| 8 |
|
fvexd |
|
| 9 |
7 7 8
|
isssc |
|
| 10 |
1 3 9
|
mpbir2and |
|
| 11 |
|
eqid |
|
| 12 |
|
eqid |
|
| 13 |
|
simpl |
|
| 14 |
|
simpr |
|
| 15 |
5 11 12 13 14
|
catidcl |
|
| 16 |
4 5 11 14 14
|
homfval |
|
| 17 |
15 16
|
eleqtrrd |
|
| 18 |
|
eqid |
|
| 19 |
13
|
adantr |
|
| 20 |
19
|
adantr |
|
| 21 |
14
|
adantr |
|
| 22 |
21
|
adantr |
|
| 23 |
|
simpl |
|
| 24 |
23
|
adantl |
|
| 25 |
24
|
adantr |
|
| 26 |
|
simpr |
|
| 27 |
26
|
adantl |
|
| 28 |
27
|
adantr |
|
| 29 |
4 5 11 21 24
|
homfval |
|
| 30 |
29
|
eleq2d |
|
| 31 |
30
|
biimpcd |
|
| 32 |
31
|
adantr |
|
| 33 |
32
|
impcom |
|
| 34 |
4 5 11 24 27
|
homfval |
|
| 35 |
34
|
eleq2d |
|
| 36 |
35
|
biimpd |
|
| 37 |
36
|
adantld |
|
| 38 |
37
|
imp |
|
| 39 |
5 11 18 20 22 25 28 33 38
|
catcocl |
|
| 40 |
4 5 11 21 27
|
homfval |
|
| 41 |
40
|
adantr |
|
| 42 |
39 41
|
eleqtrrd |
|
| 43 |
42
|
ralrimivva |
|
| 44 |
43
|
ralrimivva |
|
| 45 |
17 44
|
jca |
|
| 46 |
45
|
ralrimiva |
|
| 47 |
|
id |
|
| 48 |
4 12 18 47 7
|
issubc2 |
|
| 49 |
10 46 48
|
mpbir2and |
|