Description: For any category C , C itself is a (full) subcategory of C , see example 4.3(1.b) in Adamek p. 48. (Contributed by AV, 23-Apr-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | catsubcat | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssidd | |
|
2 | ssidd | |
|
3 | 2 | ralrimivva | |
4 | eqid | |
|
5 | eqid | |
|
6 | 4 5 | homffn | |
7 | 6 | a1i | |
8 | fvexd | |
|
9 | 7 7 8 | isssc | |
10 | 1 3 9 | mpbir2and | |
11 | eqid | |
|
12 | eqid | |
|
13 | simpl | |
|
14 | simpr | |
|
15 | 5 11 12 13 14 | catidcl | |
16 | 4 5 11 14 14 | homfval | |
17 | 15 16 | eleqtrrd | |
18 | eqid | |
|
19 | 13 | adantr | |
20 | 19 | adantr | |
21 | 14 | adantr | |
22 | 21 | adantr | |
23 | simpl | |
|
24 | 23 | adantl | |
25 | 24 | adantr | |
26 | simpr | |
|
27 | 26 | adantl | |
28 | 27 | adantr | |
29 | 4 5 11 21 24 | homfval | |
30 | 29 | eleq2d | |
31 | 30 | biimpcd | |
32 | 31 | adantr | |
33 | 32 | impcom | |
34 | 4 5 11 24 27 | homfval | |
35 | 34 | eleq2d | |
36 | 35 | biimpd | |
37 | 36 | adantld | |
38 | 37 | imp | |
39 | 5 11 18 20 22 25 28 33 38 | catcocl | |
40 | 4 5 11 21 27 | homfval | |
41 | 40 | adantr | |
42 | 39 41 | eleqtrrd | |
43 | 42 | ralrimivva | |
44 | 43 | ralrimivva | |
45 | 17 44 | jca | |
46 | 45 | ralrimiva | |
47 | id | |
|
48 | 4 12 18 47 7 | issubc2 | |
49 | 10 46 48 | mpbir2and | |