Metamath Proof Explorer


Theorem cbvproddavw

Description: Change bound variable in a product. Deduction form. (Contributed by GG, 14-Aug-2025)

Ref Expression
Hypothesis cbvproddavw.1 φ j = k B = C
Assertion cbvproddavw φ j A B = k A C

Proof

Step Hyp Ref Expression
1 cbvproddavw.1 φ j = k B = C
2 eleq1w j = k j A k A
3 2 adantl φ j = k j A k A
4 3 1 ifbieq1d φ j = k if j A B 1 = if k A C 1
5 4 cbvmptdavw φ j if j A B 1 = k if k A C 1
6 5 seqeq3d φ seq n × j if j A B 1 = seq n × k if k A C 1
7 6 breq1d φ seq n × j if j A B 1 y seq n × k if k A C 1 y
8 7 anbi2d φ y 0 seq n × j if j A B 1 y y 0 seq n × k if k A C 1 y
9 8 exbidv φ y y 0 seq n × j if j A B 1 y y y 0 seq n × k if k A C 1 y
10 9 rexbidv φ n m y y 0 seq n × j if j A B 1 y n m y y 0 seq n × k if k A C 1 y
11 5 seqeq3d φ seq m × j if j A B 1 = seq m × k if k A C 1
12 11 breq1d φ seq m × j if j A B 1 x seq m × k if k A C 1 x
13 10 12 3anbi23d φ A m n m y y 0 seq n × j if j A B 1 y seq m × j if j A B 1 x A m n m y y 0 seq n × k if k A C 1 y seq m × k if k A C 1 x
14 13 rexbidv φ m A m n m y y 0 seq n × j if j A B 1 y seq m × j if j A B 1 x m A m n m y y 0 seq n × k if k A C 1 y seq m × k if k A C 1 x
15 1 cbvcsbdavw φ f n / j B = f n / k C
16 15 mpteq2dv φ n f n / j B = n f n / k C
17 16 seqeq3d φ seq 1 × n f n / j B = seq 1 × n f n / k C
18 17 fveq1d φ seq 1 × n f n / j B m = seq 1 × n f n / k C m
19 18 eqeq2d φ x = seq 1 × n f n / j B m x = seq 1 × n f n / k C m
20 19 anbi2d φ f : 1 m 1-1 onto A x = seq 1 × n f n / j B m f : 1 m 1-1 onto A x = seq 1 × n f n / k C m
21 20 exbidv φ f f : 1 m 1-1 onto A x = seq 1 × n f n / j B m f f : 1 m 1-1 onto A x = seq 1 × n f n / k C m
22 21 rexbidv φ m f f : 1 m 1-1 onto A x = seq 1 × n f n / j B m m f f : 1 m 1-1 onto A x = seq 1 × n f n / k C m
23 14 22 orbi12d φ m A m n m y y 0 seq n × j if j A B 1 y seq m × j if j A B 1 x m f f : 1 m 1-1 onto A x = seq 1 × n f n / j B m m A m n m y y 0 seq n × k if k A C 1 y seq m × k if k A C 1 x m f f : 1 m 1-1 onto A x = seq 1 × n f n / k C m
24 23 iotabidv φ ι x | m A m n m y y 0 seq n × j if j A B 1 y seq m × j if j A B 1 x m f f : 1 m 1-1 onto A x = seq 1 × n f n / j B m = ι x | m A m n m y y 0 seq n × k if k A C 1 y seq m × k if k A C 1 x m f f : 1 m 1-1 onto A x = seq 1 × n f n / k C m
25 df-prod j A B = ι x | m A m n m y y 0 seq n × j if j A B 1 y seq m × j if j A B 1 x m f f : 1 m 1-1 onto A x = seq 1 × n f n / j B m
26 df-prod k A C = ι x | m A m n m y y 0 seq n × k if k A C 1 y seq m × k if k A C 1 x m f f : 1 m 1-1 onto A x = seq 1 × n f n / k C m
27 24 25 26 3eqtr4g φ j A B = k A C