Description: Lemma for cdj3i . The second-component function T is bounded if the subspaces are completely disjoint. (Contributed by NM, 31-May-2005) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cdj3lem2.1 | |
|
cdj3lem2.2 | |
||
cdj3lem3.3 | |
||
Assertion | cdj3lem3b | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cdj3lem2.1 | |
|
2 | cdj3lem2.2 | |
|
3 | cdj3lem3.3 | |
|
4 | 2 1 | shscomi | |
5 | 2 | sheli | |
6 | 1 | sheli | |
7 | ax-hvcom | |
|
8 | 5 6 7 | syl2an | |
9 | 8 | eqeq2d | |
10 | 9 | rexbidva | |
11 | 10 | riotabiia | |
12 | 4 11 | mpteq12i | |
13 | 3 12 | eqtr4i | |
14 | 2 1 13 | cdj3lem2b | |
15 | fveq2 | |
|
16 | 15 | oveq1d | |
17 | fvoveq1 | |
|
18 | 17 | oveq2d | |
19 | 16 18 | breq12d | |
20 | fveq2 | |
|
21 | 20 | oveq2d | |
22 | oveq2 | |
|
23 | 22 | fveq2d | |
24 | 23 | oveq2d | |
25 | 21 24 | breq12d | |
26 | 19 25 | cbvral2vw | |
27 | ralcom | |
|
28 | 2 | sheli | |
29 | normcl | |
|
30 | 28 29 | syl | |
31 | 30 | recnd | |
32 | 1 | sheli | |
33 | normcl | |
|
34 | 32 33 | syl | |
35 | 34 | recnd | |
36 | addcom | |
|
37 | 31 35 36 | syl2an | |
38 | ax-hvcom | |
|
39 | 28 32 38 | syl2an | |
40 | 39 | fveq2d | |
41 | 40 | oveq2d | |
42 | 37 41 | breq12d | |
43 | 42 | ralbidva | |
44 | 43 | ralbiia | |
45 | fveq2 | |
|
46 | 45 | oveq2d | |
47 | oveq2 | |
|
48 | 47 | fveq2d | |
49 | 48 | oveq2d | |
50 | 46 49 | breq12d | |
51 | fveq2 | |
|
52 | 51 | oveq1d | |
53 | fvoveq1 | |
|
54 | 53 | oveq2d | |
55 | 52 54 | breq12d | |
56 | 50 55 | cbvral2vw | |
57 | 44 56 | bitr2i | |
58 | 26 27 57 | 3bitri | |
59 | 58 | anbi2i | |
60 | 59 | rexbii | |
61 | 1 2 | shscomi | |
62 | 61 | raleqi | |
63 | 62 | anbi2i | |
64 | 63 | rexbii | |
65 | 14 60 64 | 3imtr4i | |