Metamath Proof Explorer


Theorem cdj3lem3b

Description: Lemma for cdj3i . The second-component function T is bounded if the subspaces are completely disjoint. (Contributed by NM, 31-May-2005) (New usage is discouraged.)

Ref Expression
Hypotheses cdj3lem2.1 AS
cdj3lem2.2 BS
cdj3lem3.3 T=xA+BιwB|zAx=z+w
Assertion cdj3lem3b v0<vxAyBnormx+normyvnormx+yv0<vuA+BnormTuvnormu

Proof

Step Hyp Ref Expression
1 cdj3lem2.1 AS
2 cdj3lem2.2 BS
3 cdj3lem3.3 T=xA+BιwB|zAx=z+w
4 2 1 shscomi B+A=A+B
5 2 sheli wBw
6 1 sheli zAz
7 ax-hvcom wzw+z=z+w
8 5 6 7 syl2an wBzAw+z=z+w
9 8 eqeq2d wBzAx=w+zx=z+w
10 9 rexbidva wBzAx=w+zzAx=z+w
11 10 riotabiia ιwB|zAx=w+z=ιwB|zAx=z+w
12 4 11 mpteq12i xB+AιwB|zAx=w+z=xA+BιwB|zAx=z+w
13 3 12 eqtr4i T=xB+AιwB|zAx=w+z
14 2 1 13 cdj3lem2b v0<vxByAnormx+normyvnormx+yv0<vuB+AnormTuvnormu
15 fveq2 x=tnormx=normt
16 15 oveq1d x=tnormx+normy=normt+normy
17 fvoveq1 x=tnormx+y=normt+y
18 17 oveq2d x=tvnormx+y=vnormt+y
19 16 18 breq12d x=tnormx+normyvnormx+ynormt+normyvnormt+y
20 fveq2 y=hnormy=normh
21 20 oveq2d y=hnormt+normy=normt+normh
22 oveq2 y=ht+y=t+h
23 22 fveq2d y=hnormt+y=normt+h
24 23 oveq2d y=hvnormt+y=vnormt+h
25 21 24 breq12d y=hnormt+normyvnormt+ynormt+normhvnormt+h
26 19 25 cbvral2vw xAyBnormx+normyvnormx+ytAhBnormt+normhvnormt+h
27 ralcom tAhBnormt+normhvnormt+hhBtAnormt+normhvnormt+h
28 2 sheli xBx
29 normcl xnormx
30 28 29 syl xBnormx
31 30 recnd xBnormx
32 1 sheli yAy
33 normcl ynormy
34 32 33 syl yAnormy
35 34 recnd yAnormy
36 addcom normxnormynormx+normy=normy+normx
37 31 35 36 syl2an xByAnormx+normy=normy+normx
38 ax-hvcom xyx+y=y+x
39 28 32 38 syl2an xByAx+y=y+x
40 39 fveq2d xByAnormx+y=normy+x
41 40 oveq2d xByAvnormx+y=vnormy+x
42 37 41 breq12d xByAnormx+normyvnormx+ynormy+normxvnormy+x
43 42 ralbidva xByAnormx+normyvnormx+yyAnormy+normxvnormy+x
44 43 ralbiia xByAnormx+normyvnormx+yxByAnormy+normxvnormy+x
45 fveq2 x=hnormx=normh
46 45 oveq2d x=hnormy+normx=normy+normh
47 oveq2 x=hy+x=y+h
48 47 fveq2d x=hnormy+x=normy+h
49 48 oveq2d x=hvnormy+x=vnormy+h
50 46 49 breq12d x=hnormy+normxvnormy+xnormy+normhvnormy+h
51 fveq2 y=tnormy=normt
52 51 oveq1d y=tnormy+normh=normt+normh
53 fvoveq1 y=tnormy+h=normt+h
54 53 oveq2d y=tvnormy+h=vnormt+h
55 52 54 breq12d y=tnormy+normhvnormy+hnormt+normhvnormt+h
56 50 55 cbvral2vw xByAnormy+normxvnormy+xhBtAnormt+normhvnormt+h
57 44 56 bitr2i hBtAnormt+normhvnormt+hxByAnormx+normyvnormx+y
58 26 27 57 3bitri xAyBnormx+normyvnormx+yxByAnormx+normyvnormx+y
59 58 anbi2i 0<vxAyBnormx+normyvnormx+y0<vxByAnormx+normyvnormx+y
60 59 rexbii v0<vxAyBnormx+normyvnormx+yv0<vxByAnormx+normyvnormx+y
61 1 2 shscomi A+B=B+A
62 61 raleqi uA+BnormTuvnormuuB+AnormTuvnormu
63 62 anbi2i 0<vuA+BnormTuvnormu0<vuB+AnormTuvnormu
64 63 rexbii v0<vuA+BnormTuvnormuv0<vuB+AnormTuvnormu
65 14 60 64 3imtr4i v0<vxAyBnormx+normyvnormx+yv0<vuA+BnormTuvnormu