Description: Part of proof of Lemma E in Crawley p. 113, 5th paragraph on p. 114, 1st line. D represents s_2. In their notation, we prove that if r <_ s \/ t, then s_2=(s \/ t) /\ w. (Contributed by NM, 13-Nov-2012)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cdleme19.l | |
|
cdleme19.j | |
||
cdleme19.m | |
||
cdleme19.a | |
||
cdleme19.h | |
||
cdleme19.u | |
||
cdleme19.f | |
||
cdleme19.g | |
||
cdleme19.d | |
||
cdleme19.y | |
||
Assertion | cdleme19a | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cdleme19.l | |
|
2 | cdleme19.j | |
|
3 | cdleme19.m | |
|
4 | cdleme19.a | |
|
5 | cdleme19.h | |
|
6 | cdleme19.u | |
|
7 | cdleme19.f | |
|
8 | cdleme19.g | |
|
9 | cdleme19.d | |
|
10 | cdleme19.y | |
|
11 | eqid | |
|
12 | hllat | |
|
13 | 12 | 3ad2ant1 | |
14 | simp1 | |
|
15 | simp21 | |
|
16 | simp22 | |
|
17 | 11 2 4 | hlatjcl | |
18 | 14 15 16 17 | syl3anc | |
19 | simp23 | |
|
20 | 11 2 4 | hlatjcl | |
21 | 14 16 19 20 | syl3anc | |
22 | simp33 | |
|
23 | 1 2 4 | hlatlej1 | |
24 | 14 16 19 23 | syl3anc | |
25 | 11 4 | atbase | |
26 | 15 25 | syl | |
27 | 11 4 | atbase | |
28 | 16 27 | syl | |
29 | 11 1 2 | latjle12 | |
30 | 13 26 28 21 29 | syl13anc | |
31 | 22 24 30 | mpbi2and | |
32 | 1 2 4 | hlatlej2 | |
33 | 14 15 16 32 | syl3anc | |
34 | hlcvl | |
|
35 | 34 | 3ad2ant1 | |
36 | simp31 | |
|
37 | simp32 | |
|
38 | nbrne2 | |
|
39 | 36 37 38 | syl2anc | |
40 | 1 2 4 | cvlatexch1 | |
41 | 35 15 19 16 39 40 | syl131anc | |
42 | 22 41 | mpd | |
43 | 2 4 | hlatjcom | |
44 | 14 15 16 43 | syl3anc | |
45 | 42 44 | breqtrrd | |
46 | 11 4 | atbase | |
47 | 19 46 | syl | |
48 | 11 1 2 | latjle12 | |
49 | 13 28 47 18 48 | syl13anc | |
50 | 33 45 49 | mpbi2and | |
51 | 11 1 13 18 21 31 50 | latasymd | |
52 | 51 | oveq1d | |
53 | 9 52 | eqtrid | |