Metamath Proof Explorer


Theorem cdleme19a

Description: Part of proof of Lemma E in Crawley p. 113, 5th paragraph on p. 114, 1st line. D represents s_2. In their notation, we prove that if r <_ s \/ t, then s_2=(s \/ t) /\ w. (Contributed by NM, 13-Nov-2012)

Ref Expression
Hypotheses cdleme19.l ˙=K
cdleme19.j ˙=joinK
cdleme19.m ˙=meetK
cdleme19.a A=AtomsK
cdleme19.h H=LHypK
cdleme19.u U=P˙Q˙W
cdleme19.f F=S˙U˙Q˙P˙S˙W
cdleme19.g G=T˙U˙Q˙P˙T˙W
cdleme19.d D=R˙S˙W
cdleme19.y Y=R˙T˙W
Assertion cdleme19a KHLRASATAR˙P˙Q¬S˙P˙QR˙S˙TD=S˙T˙W

Proof

Step Hyp Ref Expression
1 cdleme19.l ˙=K
2 cdleme19.j ˙=joinK
3 cdleme19.m ˙=meetK
4 cdleme19.a A=AtomsK
5 cdleme19.h H=LHypK
6 cdleme19.u U=P˙Q˙W
7 cdleme19.f F=S˙U˙Q˙P˙S˙W
8 cdleme19.g G=T˙U˙Q˙P˙T˙W
9 cdleme19.d D=R˙S˙W
10 cdleme19.y Y=R˙T˙W
11 eqid BaseK=BaseK
12 hllat KHLKLat
13 12 3ad2ant1 KHLRASATAR˙P˙Q¬S˙P˙QR˙S˙TKLat
14 simp1 KHLRASATAR˙P˙Q¬S˙P˙QR˙S˙TKHL
15 simp21 KHLRASATAR˙P˙Q¬S˙P˙QR˙S˙TRA
16 simp22 KHLRASATAR˙P˙Q¬S˙P˙QR˙S˙TSA
17 11 2 4 hlatjcl KHLRASAR˙SBaseK
18 14 15 16 17 syl3anc KHLRASATAR˙P˙Q¬S˙P˙QR˙S˙TR˙SBaseK
19 simp23 KHLRASATAR˙P˙Q¬S˙P˙QR˙S˙TTA
20 11 2 4 hlatjcl KHLSATAS˙TBaseK
21 14 16 19 20 syl3anc KHLRASATAR˙P˙Q¬S˙P˙QR˙S˙TS˙TBaseK
22 simp33 KHLRASATAR˙P˙Q¬S˙P˙QR˙S˙TR˙S˙T
23 1 2 4 hlatlej1 KHLSATAS˙S˙T
24 14 16 19 23 syl3anc KHLRASATAR˙P˙Q¬S˙P˙QR˙S˙TS˙S˙T
25 11 4 atbase RARBaseK
26 15 25 syl KHLRASATAR˙P˙Q¬S˙P˙QR˙S˙TRBaseK
27 11 4 atbase SASBaseK
28 16 27 syl KHLRASATAR˙P˙Q¬S˙P˙QR˙S˙TSBaseK
29 11 1 2 latjle12 KLatRBaseKSBaseKS˙TBaseKR˙S˙TS˙S˙TR˙S˙S˙T
30 13 26 28 21 29 syl13anc KHLRASATAR˙P˙Q¬S˙P˙QR˙S˙TR˙S˙TS˙S˙TR˙S˙S˙T
31 22 24 30 mpbi2and KHLRASATAR˙P˙Q¬S˙P˙QR˙S˙TR˙S˙S˙T
32 1 2 4 hlatlej2 KHLRASAS˙R˙S
33 14 15 16 32 syl3anc KHLRASATAR˙P˙Q¬S˙P˙QR˙S˙TS˙R˙S
34 hlcvl KHLKCvLat
35 34 3ad2ant1 KHLRASATAR˙P˙Q¬S˙P˙QR˙S˙TKCvLat
36 simp31 KHLRASATAR˙P˙Q¬S˙P˙QR˙S˙TR˙P˙Q
37 simp32 KHLRASATAR˙P˙Q¬S˙P˙QR˙S˙T¬S˙P˙Q
38 nbrne2 R˙P˙Q¬S˙P˙QRS
39 36 37 38 syl2anc KHLRASATAR˙P˙Q¬S˙P˙QR˙S˙TRS
40 1 2 4 cvlatexch1 KCvLatRATASARSR˙S˙TT˙S˙R
41 35 15 19 16 39 40 syl131anc KHLRASATAR˙P˙Q¬S˙P˙QR˙S˙TR˙S˙TT˙S˙R
42 22 41 mpd KHLRASATAR˙P˙Q¬S˙P˙QR˙S˙TT˙S˙R
43 2 4 hlatjcom KHLRASAR˙S=S˙R
44 14 15 16 43 syl3anc KHLRASATAR˙P˙Q¬S˙P˙QR˙S˙TR˙S=S˙R
45 42 44 breqtrrd KHLRASATAR˙P˙Q¬S˙P˙QR˙S˙TT˙R˙S
46 11 4 atbase TATBaseK
47 19 46 syl KHLRASATAR˙P˙Q¬S˙P˙QR˙S˙TTBaseK
48 11 1 2 latjle12 KLatSBaseKTBaseKR˙SBaseKS˙R˙ST˙R˙SS˙T˙R˙S
49 13 28 47 18 48 syl13anc KHLRASATAR˙P˙Q¬S˙P˙QR˙S˙TS˙R˙ST˙R˙SS˙T˙R˙S
50 33 45 49 mpbi2and KHLRASATAR˙P˙Q¬S˙P˙QR˙S˙TS˙T˙R˙S
51 11 1 13 18 21 31 50 latasymd KHLRASATAR˙P˙Q¬S˙P˙QR˙S˙TR˙S=S˙T
52 51 oveq1d KHLRASATAR˙P˙Q¬S˙P˙QR˙S˙TR˙S˙W=S˙T˙W
53 9 52 eqtrid KHLRASATAR˙P˙Q¬S˙P˙QR˙S˙TD=S˙T˙W