| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cdleme35.l |
|
| 2 |
|
cdleme35.j |
|
| 3 |
|
cdleme35.m |
|
| 4 |
|
cdleme35.a |
|
| 5 |
|
cdleme35.h |
|
| 6 |
|
cdleme35.u |
|
| 7 |
|
cdleme35.f |
|
| 8 |
|
simp11l |
|
| 9 |
|
simp12l |
|
| 10 |
|
simp2rl |
|
| 11 |
2 4
|
hlatjcom |
|
| 12 |
8 9 10 11
|
syl3anc |
|
| 13 |
12
|
oveq2d |
|
| 14 |
|
simp11 |
|
| 15 |
|
simp12 |
|
| 16 |
|
simp13l |
|
| 17 |
|
simp2l |
|
| 18 |
1 2 3 4 5 6
|
cdleme0a |
|
| 19 |
14 15 16 17 18
|
syl112anc |
|
| 20 |
|
simp12r |
|
| 21 |
8
|
hllatd |
|
| 22 |
|
eqid |
|
| 23 |
22 2 4
|
hlatjcl |
|
| 24 |
8 9 16 23
|
syl3anc |
|
| 25 |
|
simp11r |
|
| 26 |
22 5
|
lhpbase |
|
| 27 |
25 26
|
syl |
|
| 28 |
22 1 3
|
latmle2 |
|
| 29 |
21 24 27 28
|
syl3anc |
|
| 30 |
6 29
|
eqbrtrid |
|
| 31 |
|
breq1 |
|
| 32 |
30 31
|
syl5ibcom |
|
| 33 |
32
|
necon3bd |
|
| 34 |
20 33
|
mpd |
|
| 35 |
|
simp3 |
|
| 36 |
22 1 3
|
latmle1 |
|
| 37 |
21 24 27 36
|
syl3anc |
|
| 38 |
6 37
|
eqbrtrid |
|
| 39 |
1 2 4
|
hlatlej1 |
|
| 40 |
8 9 16 39
|
syl3anc |
|
| 41 |
22 4
|
atbase |
|
| 42 |
19 41
|
syl |
|
| 43 |
22 4
|
atbase |
|
| 44 |
9 43
|
syl |
|
| 45 |
22 1 2
|
latjle12 |
|
| 46 |
21 42 44 24 45
|
syl13anc |
|
| 47 |
38 40 46
|
mpbi2and |
|
| 48 |
22 4
|
atbase |
|
| 49 |
10 48
|
syl |
|
| 50 |
22 2 4
|
hlatjcl |
|
| 51 |
8 19 9 50
|
syl3anc |
|
| 52 |
22 1
|
lattr |
|
| 53 |
21 49 51 24 52
|
syl13anc |
|
| 54 |
47 53
|
mpan2d |
|
| 55 |
35 54
|
mtod |
|
| 56 |
1 2 3 4
|
2llnma2 |
|
| 57 |
8 19 9 10 34 55 56
|
syl132anc |
|
| 58 |
13 57
|
eqtrd |
|