| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cdleme41.b |  | 
						
							| 2 |  | cdleme41.l |  | 
						
							| 3 |  | cdleme41.j |  | 
						
							| 4 |  | cdleme41.m |  | 
						
							| 5 |  | cdleme41.a |  | 
						
							| 6 |  | cdleme41.h |  | 
						
							| 7 |  | cdleme41.u |  | 
						
							| 8 |  | cdleme41.d |  | 
						
							| 9 |  | cdleme41.e |  | 
						
							| 10 |  | cdleme41.g |  | 
						
							| 11 |  | cdleme41.i |  | 
						
							| 12 |  | cdleme41.n |  | 
						
							| 13 |  | cdleme41.o |  | 
						
							| 14 |  | cdleme41.f |  | 
						
							| 15 |  | cdleme34e.v |  | 
						
							| 16 |  | simp11l |  | 
						
							| 17 | 16 | hllatd |  | 
						
							| 18 |  | simp1 |  | 
						
							| 19 |  | simp2rl |  | 
						
							| 20 | 1 5 | atbase |  | 
						
							| 21 | 19 20 | syl |  | 
						
							| 22 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 | cdleme32fvcl |  | 
						
							| 23 | 18 21 22 | syl2anc |  | 
						
							| 24 |  | simp2ll |  | 
						
							| 25 | 1 3 5 | hlatjcl |  | 
						
							| 26 | 16 24 19 25 | syl3anc |  | 
						
							| 27 |  | simp11r |  | 
						
							| 28 | 1 6 | lhpbase |  | 
						
							| 29 | 27 28 | syl |  | 
						
							| 30 | 1 4 | latmcl |  | 
						
							| 31 | 17 26 29 30 | syl3anc |  | 
						
							| 32 | 15 31 | eqeltrid |  | 
						
							| 33 | 1 2 3 | latlej1 |  | 
						
							| 34 | 17 23 32 33 | syl3anc |  | 
						
							| 35 | 3 5 | hlatjcom |  | 
						
							| 36 | 16 24 19 35 | syl3anc |  | 
						
							| 37 | 36 | oveq1d |  | 
						
							| 38 | 15 37 | eqtrid |  | 
						
							| 39 | 38 | oveq2d |  | 
						
							| 40 |  | simp2r |  | 
						
							| 41 |  | simp2l |  | 
						
							| 42 |  | simp3 |  | 
						
							| 43 |  | eqid |  | 
						
							| 44 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 43 | cdleme42g |  | 
						
							| 45 | 18 40 41 42 44 | syl121anc |  | 
						
							| 46 | 39 45 | eqtr4d |  | 
						
							| 47 | 36 | fveq2d |  | 
						
							| 48 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | cdleme42g |  | 
						
							| 49 | 46 47 48 | 3eqtr2d |  | 
						
							| 50 | 34 49 | breqtrd |  |